You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/net/npcm7xx_emc.c

879 lines
27 KiB
C

/*
* Nuvoton NPCM7xx EMC Module
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* Unsupported/unimplemented features:
* - MCMDR.FDUP (full duplex) is ignored, half duplex is not supported
* - Only CAM0 is supported, CAM[1-15] are not
* - writes to CAMEN.[1-15] are ignored, these bits always read as zeroes
* - MII is not implemented, MIIDA.BUSY and MIID always return zero
* - MCMDR.LBK is not implemented
* - MCMDR.{OPMOD,ENSQE,AEP,ARP} are not supported
* - H/W FIFOs are not supported, MCMDR.FFTCR is ignored
* - MGSTA.SQE is not supported
* - pause and control frames are not implemented
* - MGSTA.CCNT is not supported
* - MPCNT, DMARFS are not implemented
*/
#include "qemu/osdep.h"
#include <zlib.h> /* for crc32 */
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-properties.h"
#include "hw/net/npcm7xx_emc.h"
#include "net/eth.h"
#include "migration/vmstate.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/units.h"
#include "sysemu/dma.h"
#include "trace.h"
#define CRC_LENGTH 4
/*
* The maximum size of a (layer 2) ethernet frame as defined by 802.3.
* 1518 = 6(dest macaddr) + 6(src macaddr) + 2(proto) + 4(crc) + 1500(payload)
* This does not include an additional 4 for the vlan field (802.1q).
*/
#define MAX_ETH_FRAME_SIZE 1518
static const char *emc_reg_name(int regno)
{
#define REG(name) case REG_ ## name: return #name;
switch (regno) {
REG(CAMCMR)
REG(CAMEN)
REG(TXDLSA)
REG(RXDLSA)
REG(MCMDR)
REG(MIID)
REG(MIIDA)
REG(FFTCR)
REG(TSDR)
REG(RSDR)
REG(DMARFC)
REG(MIEN)
REG(MISTA)
REG(MGSTA)
REG(MPCNT)
REG(MRPC)
REG(MRPCC)
REG(MREPC)
REG(DMARFS)
REG(CTXDSA)
REG(CTXBSA)
REG(CRXDSA)
REG(CRXBSA)
case REG_CAMM_BASE + 0: return "CAM0M";
case REG_CAML_BASE + 0: return "CAM0L";
case REG_CAMM_BASE + 2 ... REG_CAMML_LAST:
/* Only CAM0 is supported, fold the others into something simple. */
if (regno & 1) {
return "CAM<n>L";
} else {
return "CAM<n>M";
}
default: return "UNKNOWN";
}
#undef REG
}
static void emc_reset(NPCM7xxEMCState *emc)
{
uint32_t value;
trace_npcm7xx_emc_reset(emc->emc_num);
memset(&emc->regs[0], 0, sizeof(emc->regs));
/* These regs have non-zero reset values. */
emc->regs[REG_TXDLSA] = 0xfffffffc;
emc->regs[REG_RXDLSA] = 0xfffffffc;
emc->regs[REG_MIIDA] = 0x00900000;
emc->regs[REG_FFTCR] = 0x0101;
emc->regs[REG_DMARFC] = 0x0800;
emc->regs[REG_MPCNT] = 0x7fff;
emc->tx_active = false;
emc->rx_active = false;
/* Set the MAC address in the register space. */
value = (emc->conf.macaddr.a[0] << 24) |
(emc->conf.macaddr.a[1] << 16) |
(emc->conf.macaddr.a[2] << 8) |
emc->conf.macaddr.a[3];
emc->regs[REG_CAMM_BASE] = value;
value = (emc->conf.macaddr.a[4] << 24) | (emc->conf.macaddr.a[5] << 16);
emc->regs[REG_CAML_BASE] = value;
}
static void npcm7xx_emc_reset(DeviceState *dev)
{
NPCM7xxEMCState *emc = NPCM7XX_EMC(dev);
emc_reset(emc);
}
static void emc_soft_reset(NPCM7xxEMCState *emc)
{
/*
* The docs say at least MCMDR.{LBK,OPMOD} bits are not changed during a
* soft reset, but does not go into further detail. For now, KISS.
*/
uint32_t mcmdr = emc->regs[REG_MCMDR];
emc_reset(emc);
emc->regs[REG_MCMDR] = mcmdr & (REG_MCMDR_LBK | REG_MCMDR_OPMOD);
qemu_set_irq(emc->tx_irq, 0);
qemu_set_irq(emc->rx_irq, 0);
}
static void emc_set_link(NetClientState *nc)
{
/* Nothing to do yet. */
}
/* MISTA.TXINTR is the union of the individual bits with their enables. */
static void emc_update_mista_txintr(NPCM7xxEMCState *emc)
{
/* Only look at the bits we support. */
uint32_t mask = (REG_MISTA_TXBERR |
REG_MISTA_TDU |
REG_MISTA_TXCP);
if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) {
emc->regs[REG_MISTA] |= REG_MISTA_TXINTR;
} else {
emc->regs[REG_MISTA] &= ~REG_MISTA_TXINTR;
}
}
/* MISTA.RXINTR is the union of the individual bits with their enables. */
static void emc_update_mista_rxintr(NPCM7xxEMCState *emc)
{
/* Only look at the bits we support. */
uint32_t mask = (REG_MISTA_RXBERR |
REG_MISTA_RDU |
REG_MISTA_RXGD);
if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & mask) {
emc->regs[REG_MISTA] |= REG_MISTA_RXINTR;
} else {
emc->regs[REG_MISTA] &= ~REG_MISTA_RXINTR;
}
}
/* N.B. emc_update_mista_txintr must have already been called. */
static void emc_update_tx_irq(NPCM7xxEMCState *emc)
{
int level = !!(emc->regs[REG_MISTA] &
emc->regs[REG_MIEN] &
REG_MISTA_TXINTR);
trace_npcm7xx_emc_update_tx_irq(level);
qemu_set_irq(emc->tx_irq, level);
}
/* N.B. emc_update_mista_rxintr must have already been called. */
static void emc_update_rx_irq(NPCM7xxEMCState *emc)
{
int level = !!(emc->regs[REG_MISTA] &
emc->regs[REG_MIEN] &
REG_MISTA_RXINTR);
trace_npcm7xx_emc_update_rx_irq(level);
qemu_set_irq(emc->rx_irq, level);
}
/* Update IRQ states due to changes in MIEN,MISTA. */
static void emc_update_irq_from_reg_change(NPCM7xxEMCState *emc)
{
emc_update_mista_txintr(emc);
emc_update_tx_irq(emc);
emc_update_mista_rxintr(emc);
emc_update_rx_irq(emc);
}
static int emc_read_tx_desc(dma_addr_t addr, NPCM7xxEMCTxDesc *desc)
{
if (dma_memory_read(&address_space_memory, addr, desc,
sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
desc->flags = le32_to_cpu(desc->flags);
desc->txbsa = le32_to_cpu(desc->txbsa);
desc->status_and_length = le32_to_cpu(desc->status_and_length);
desc->ntxdsa = le32_to_cpu(desc->ntxdsa);
return 0;
}
static int emc_write_tx_desc(const NPCM7xxEMCTxDesc *desc, dma_addr_t addr)
{
NPCM7xxEMCTxDesc le_desc;
le_desc.flags = cpu_to_le32(desc->flags);
le_desc.txbsa = cpu_to_le32(desc->txbsa);
le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa);
if (dma_memory_write(&address_space_memory, addr, &le_desc,
sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
return 0;
}
static int emc_read_rx_desc(dma_addr_t addr, NPCM7xxEMCRxDesc *desc)
{
if (dma_memory_read(&address_space_memory, addr, desc,
sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
desc->status_and_length = le32_to_cpu(desc->status_and_length);
desc->rxbsa = le32_to_cpu(desc->rxbsa);
desc->reserved = le32_to_cpu(desc->reserved);
desc->nrxdsa = le32_to_cpu(desc->nrxdsa);
return 0;
}
static int emc_write_rx_desc(const NPCM7xxEMCRxDesc *desc, dma_addr_t addr)
{
NPCM7xxEMCRxDesc le_desc;
le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
le_desc.rxbsa = cpu_to_le32(desc->rxbsa);
le_desc.reserved = cpu_to_le32(desc->reserved);
le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa);
if (dma_memory_write(&address_space_memory, addr, &le_desc,
sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
return 0;
}
static void emc_set_mista(NPCM7xxEMCState *emc, uint32_t flags)
{
trace_npcm7xx_emc_set_mista(flags);
emc->regs[REG_MISTA] |= flags;
if (extract32(flags, 16, 16)) {
emc_update_mista_txintr(emc);
}
if (extract32(flags, 0, 16)) {
emc_update_mista_rxintr(emc);
}
}
static void emc_halt_tx(NPCM7xxEMCState *emc, uint32_t mista_flag)
{
emc->tx_active = false;
emc_set_mista(emc, mista_flag);
}
static void emc_halt_rx(NPCM7xxEMCState *emc, uint32_t mista_flag)
{
emc->rx_active = false;
emc_set_mista(emc, mista_flag);
}
static void emc_enable_rx_and_flush(NPCM7xxEMCState *emc)
{
emc->rx_active = true;
qemu_flush_queued_packets(qemu_get_queue(emc->nic));
}
static void emc_set_next_tx_descriptor(NPCM7xxEMCState *emc,
const NPCM7xxEMCTxDesc *tx_desc,
uint32_t desc_addr)
{
/* Update the current descriptor, if only to reset the owner flag. */
if (emc_write_tx_desc(tx_desc, desc_addr)) {
/*
* We just read it so this shouldn't generally happen.
* Error already reported.
*/
emc_set_mista(emc, REG_MISTA_TXBERR);
}
emc->regs[REG_CTXDSA] = TX_DESC_NTXDSA(tx_desc->ntxdsa);
}
static void emc_set_next_rx_descriptor(NPCM7xxEMCState *emc,
const NPCM7xxEMCRxDesc *rx_desc,
uint32_t desc_addr)
{
/* Update the current descriptor, if only to reset the owner flag. */
if (emc_write_rx_desc(rx_desc, desc_addr)) {
/*
* We just read it so this shouldn't generally happen.
* Error already reported.
*/
emc_set_mista(emc, REG_MISTA_RXBERR);
}
emc->regs[REG_CRXDSA] = RX_DESC_NRXDSA(rx_desc->nrxdsa);
}
static void emc_try_send_next_packet(NPCM7xxEMCState *emc)
{
/* Working buffer for sending out packets. Most packets fit in this. */
#define TX_BUFFER_SIZE 2048
uint8_t tx_send_buffer[TX_BUFFER_SIZE];
uint32_t desc_addr = TX_DESC_NTXDSA(emc->regs[REG_CTXDSA]);
NPCM7xxEMCTxDesc tx_desc;
uint32_t next_buf_addr, length;
uint8_t *buf;
g_autofree uint8_t *malloced_buf = NULL;
if (emc_read_tx_desc(desc_addr, &tx_desc)) {
/* Error reading descriptor, already reported. */
emc_halt_tx(emc, REG_MISTA_TXBERR);
emc_update_tx_irq(emc);
return;
}
/* Nothing we can do if we don't own the descriptor. */
if (!(tx_desc.flags & TX_DESC_FLAG_OWNER_MASK)) {
trace_npcm7xx_emc_cpu_owned_desc(desc_addr);
emc_halt_tx(emc, REG_MISTA_TDU);
emc_update_tx_irq(emc);
return;
}
/* Give the descriptor back regardless of what happens. */
tx_desc.flags &= ~TX_DESC_FLAG_OWNER_MASK;
tx_desc.status_and_length &= 0xffff;
/*
* Despite the h/w documentation saying the tx buffer is word aligned,
* the linux driver does not word align the buffer. There is value in not
* aligning the buffer: See the description of NET_IP_ALIGN in linux
* kernel sources.
*/
next_buf_addr = tx_desc.txbsa;
emc->regs[REG_CTXBSA] = next_buf_addr;
length = TX_DESC_PKT_LEN(tx_desc.status_and_length);
buf = &tx_send_buffer[0];
if (length > sizeof(tx_send_buffer)) {
malloced_buf = g_malloc(length);
buf = malloced_buf;
}
if (dma_memory_read(&address_space_memory, next_buf_addr, buf,
length, MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read packet @ 0x%x\n",
__func__, next_buf_addr);
emc_set_mista(emc, REG_MISTA_TXBERR);
emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr);
emc_update_tx_irq(emc);
trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]);
return;
}
if ((tx_desc.flags & TX_DESC_FLAG_PADEN) && (length < MIN_PACKET_LENGTH)) {
memset(buf + length, 0, MIN_PACKET_LENGTH - length);
length = MIN_PACKET_LENGTH;
}
/* N.B. emc_receive can get called here. */
qemu_send_packet(qemu_get_queue(emc->nic), buf, length);
trace_npcm7xx_emc_sent_packet(length);
tx_desc.status_and_length |= TX_DESC_STATUS_TXCP;
if (tx_desc.flags & TX_DESC_FLAG_INTEN) {
emc_set_mista(emc, REG_MISTA_TXCP);
}
if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_TXINTR) {
tx_desc.status_and_length |= TX_DESC_STATUS_TXINTR;
}
emc_set_next_tx_descriptor(emc, &tx_desc, desc_addr);
emc_update_tx_irq(emc);
trace_npcm7xx_emc_tx_done(emc->regs[REG_CTXDSA]);
}
static bool emc_can_receive(NetClientState *nc)
{
NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc));
bool can_receive = emc->rx_active;
trace_npcm7xx_emc_can_receive(can_receive);
return can_receive;
}
/* If result is false then *fail_reason contains the reason. */
static bool emc_receive_filter1(NPCM7xxEMCState *emc, const uint8_t *buf,
size_t len, const char **fail_reason)
{
eth_pkt_types_e pkt_type = get_eth_packet_type(PKT_GET_ETH_HDR(buf));
switch (pkt_type) {
case ETH_PKT_BCAST:
if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) {
return true;
} else {
*fail_reason = "Broadcast packet disabled";
return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_ABP);
}
case ETH_PKT_MCAST:
if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) {
return true;
} else {
*fail_reason = "Multicast packet disabled";
return !!(emc->regs[REG_CAMCMR] & REG_CAMCMR_AMP);
}
case ETH_PKT_UCAST: {
bool matches;
uint32_t value;
struct MACAddr mac;
if (emc->regs[REG_CAMCMR] & REG_CAMCMR_AUP) {
return true;
}
value = emc->regs[REG_CAMM_BASE];
mac.a[0] = value >> 24;
mac.a[1] = value >> 16;
mac.a[2] = value >> 8;
mac.a[3] = value >> 0;
value = emc->regs[REG_CAML_BASE];
mac.a[4] = value >> 24;
mac.a[5] = value >> 16;
matches = ((emc->regs[REG_CAMCMR] & REG_CAMCMR_ECMP) &&
/* We only support one CAM register, CAM0. */
(emc->regs[REG_CAMEN] & (1 << 0)) &&
memcmp(buf, mac.a, ETH_ALEN) == 0);
if (emc->regs[REG_CAMCMR] & REG_CAMCMR_CCAM) {
*fail_reason = "MACADDR matched, comparison complemented";
return !matches;
} else {
*fail_reason = "MACADDR didn't match";
return matches;
}
}
default:
g_assert_not_reached();
}
}
static bool emc_receive_filter(NPCM7xxEMCState *emc, const uint8_t *buf,
size_t len)
{
const char *fail_reason = NULL;
bool ok = emc_receive_filter1(emc, buf, len, &fail_reason);
if (!ok) {
trace_npcm7xx_emc_packet_filtered_out(fail_reason);
}
return ok;
}
static ssize_t emc_receive(NetClientState *nc, const uint8_t *buf, size_t len1)
{
NPCM7xxEMCState *emc = NPCM7XX_EMC(qemu_get_nic_opaque(nc));
const uint32_t len = len1;
size_t max_frame_len;
bool long_frame;
uint32_t desc_addr;
NPCM7xxEMCRxDesc rx_desc;
uint32_t crc;
uint8_t *crc_ptr;
uint32_t buf_addr;
trace_npcm7xx_emc_receiving_packet(len);
if (!emc_can_receive(nc)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Unexpected packet\n", __func__);
return -1;
}
if (len < ETH_HLEN ||
/* Defensive programming: drop unsupportable large packets. */
len > 0xffff - CRC_LENGTH) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Dropped frame of %u bytes\n",
__func__, len);
return len;
}
/*
* DENI is set if EMC received the Length/Type field of the incoming
* packet, so it will be set regardless of what happens next.
*/
emc_set_mista(emc, REG_MISTA_DENI);
if (!emc_receive_filter(emc, buf, len)) {
emc_update_rx_irq(emc);
return len;
}
/* Huge frames (> DMARFC) are dropped. */
max_frame_len = REG_DMARFC_RXMS(emc->regs[REG_DMARFC]);
if (len + CRC_LENGTH > max_frame_len) {
trace_npcm7xx_emc_packet_dropped(len);
emc_set_mista(emc, REG_MISTA_DFOI);
emc_update_rx_irq(emc);
return len;
}
/*
* Long Frames (> MAX_ETH_FRAME_SIZE) are also dropped, unless MCMDR.ALP
* is set.
*/
long_frame = false;
if (len + CRC_LENGTH > MAX_ETH_FRAME_SIZE) {
if (emc->regs[REG_MCMDR] & REG_MCMDR_ALP) {
long_frame = true;
} else {
trace_npcm7xx_emc_packet_dropped(len);
emc_set_mista(emc, REG_MISTA_PTLE);
emc_update_rx_irq(emc);
return len;
}
}
desc_addr = RX_DESC_NRXDSA(emc->regs[REG_CRXDSA]);
if (emc_read_rx_desc(desc_addr, &rx_desc)) {
/* Error reading descriptor, already reported. */
emc_halt_rx(emc, REG_MISTA_RXBERR);
emc_update_rx_irq(emc);
return len;
}
/* Nothing we can do if we don't own the descriptor. */
if (!(rx_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK)) {
trace_npcm7xx_emc_cpu_owned_desc(desc_addr);
emc_halt_rx(emc, REG_MISTA_RDU);
emc_update_rx_irq(emc);
return len;
}
crc = 0;
crc_ptr = (uint8_t *) &crc;
if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) {
crc = cpu_to_be32(crc32(~0, buf, len));
}
/* Give the descriptor back regardless of what happens. */
rx_desc.status_and_length &= ~RX_DESC_STATUS_OWNER_MASK;
buf_addr = rx_desc.rxbsa;
emc->regs[REG_CRXBSA] = buf_addr;
if (dma_memory_write(&address_space_memory, buf_addr, buf,
len, MEMTXATTRS_UNSPECIFIED) ||
(!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC) &&
dma_memory_write(&address_space_memory, buf_addr + len,
crc_ptr, 4, MEMTXATTRS_UNSPECIFIED))) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Bus error writing packet\n",
__func__);
emc_set_mista(emc, REG_MISTA_RXBERR);
emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr);
emc_update_rx_irq(emc);
trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]);
return len;
}
trace_npcm7xx_emc_received_packet(len);
/* Note: We've already verified len+4 <= 0xffff. */
rx_desc.status_and_length = len;
if (!(emc->regs[REG_MCMDR] & REG_MCMDR_SPCRC)) {
rx_desc.status_and_length += 4;
}
rx_desc.status_and_length |= RX_DESC_STATUS_RXGD;
emc_set_mista(emc, REG_MISTA_RXGD);
if (emc->regs[REG_MISTA] & emc->regs[REG_MIEN] & REG_MISTA_RXINTR) {
rx_desc.status_and_length |= RX_DESC_STATUS_RXINTR;
}
if (long_frame) {
rx_desc.status_and_length |= RX_DESC_STATUS_PTLE;
}
emc_set_next_rx_descriptor(emc, &rx_desc, desc_addr);
emc_update_rx_irq(emc);
trace_npcm7xx_emc_rx_done(emc->regs[REG_CRXDSA]);
return len;
}
static uint64_t npcm7xx_emc_read(void *opaque, hwaddr offset, unsigned size)
{
NPCM7xxEMCState *emc = opaque;
uint32_t reg = offset / sizeof(uint32_t);
uint32_t result;
if (reg >= NPCM7XX_NUM_EMC_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid offset 0x%04" HWADDR_PRIx "\n",
__func__, offset);
return 0;
}
switch (reg) {
case REG_MIID:
/*
* We don't implement MII. For determinism, always return zero as
* writes record the last value written for debugging purposes.
*/
qemu_log_mask(LOG_UNIMP, "%s: Read of MIID, returning 0\n", __func__);
result = 0;
break;
case REG_TSDR:
case REG_RSDR:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only reg, %s/%d\n",
__func__, emc_reg_name(reg), reg);
return 0;
default:
result = emc->regs[reg];
break;
}
trace_npcm7xx_emc_reg_read(emc->emc_num, result, emc_reg_name(reg), reg);
return result;
}
static void npcm7xx_emc_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
NPCM7xxEMCState *emc = opaque;
uint32_t reg = offset / sizeof(uint32_t);
uint32_t value = v;
g_assert(size == sizeof(uint32_t));
if (reg >= NPCM7XX_NUM_EMC_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid offset 0x%04" HWADDR_PRIx "\n",
__func__, offset);
return;
}
trace_npcm7xx_emc_reg_write(emc->emc_num, emc_reg_name(reg), reg, value);
switch (reg) {
case REG_CAMCMR:
emc->regs[reg] = value;
break;
case REG_CAMEN:
/* Only CAM0 is supported, don't pretend otherwise. */
if (value & ~1) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Only CAM0 is supported, cannot enable others"
": 0x%x\n",
__func__, value);
}
emc->regs[reg] = value & 1;
break;
case REG_CAMM_BASE + 0:
emc->regs[reg] = value;
break;
case REG_CAML_BASE + 0:
emc->regs[reg] = value;
break;
case REG_MCMDR: {
uint32_t prev;
if (value & REG_MCMDR_SWR) {
emc_soft_reset(emc);
/* On h/w the reset happens over multiple cycles. For now KISS. */
break;
}
prev = emc->regs[reg];
emc->regs[reg] = value;
/* Update tx state. */
if (!(prev & REG_MCMDR_TXON) &&
(value & REG_MCMDR_TXON)) {
emc->regs[REG_CTXDSA] = emc->regs[REG_TXDLSA];
/*
* Linux kernel turns TX on with CPU still holding descriptor,
* which suggests we should wait for a write to TSDR before trying
* to send a packet: so we don't send one here.
*/
} else if ((prev & REG_MCMDR_TXON) &&
!(value & REG_MCMDR_TXON)) {
emc->regs[REG_MGSTA] |= REG_MGSTA_TXHA;
}
if (!(value & REG_MCMDR_TXON)) {
emc_halt_tx(emc, 0);
}
/* Update rx state. */
if (!(prev & REG_MCMDR_RXON) &&
(value & REG_MCMDR_RXON)) {
emc->regs[REG_CRXDSA] = emc->regs[REG_RXDLSA];
} else if ((prev & REG_MCMDR_RXON) &&
!(value & REG_MCMDR_RXON)) {
emc->regs[REG_MGSTA] |= REG_MGSTA_RXHA;
}
if (value & REG_MCMDR_RXON) {
emc_enable_rx_and_flush(emc);
} else {
emc_halt_rx(emc, 0);
}
break;
}
case REG_TXDLSA:
case REG_RXDLSA:
case REG_DMARFC:
case REG_MIID:
emc->regs[reg] = value;
break;
case REG_MIEN:
emc->regs[reg] = value;
emc_update_irq_from_reg_change(emc);
break;
case REG_MISTA:
/* Clear the bits that have 1 in "value". */
emc->regs[reg] &= ~value;
emc_update_irq_from_reg_change(emc);
break;
case REG_MGSTA:
/* Clear the bits that have 1 in "value". */
emc->regs[reg] &= ~value;
break;
case REG_TSDR:
if (emc->regs[REG_MCMDR] & REG_MCMDR_TXON) {
emc->tx_active = true;
/* Keep trying to send packets until we run out. */
while (emc->tx_active) {
emc_try_send_next_packet(emc);
}
}
break;
case REG_RSDR:
if (emc->regs[REG_MCMDR] & REG_MCMDR_RXON) {
emc_enable_rx_and_flush(emc);
}
break;
case REG_MIIDA:
emc->regs[reg] = value & ~REG_MIIDA_BUSY;
break;
case REG_MRPC:
case REG_MRPCC:
case REG_MREPC:
case REG_CTXDSA:
case REG_CTXBSA:
case REG_CRXDSA:
case REG_CRXBSA:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write to read-only reg %s/%d\n",
__func__, emc_reg_name(reg), reg);
break;
default:
qemu_log_mask(LOG_UNIMP, "%s: Write to unimplemented reg %s/%d\n",
__func__, emc_reg_name(reg), reg);
break;
}
}
static const struct MemoryRegionOps npcm7xx_emc_ops = {
.read = npcm7xx_emc_read,
.write = npcm7xx_emc_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void emc_cleanup(NetClientState *nc)
{
/* Nothing to do yet. */
}
static NetClientInfo net_npcm7xx_emc_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = emc_can_receive,
.receive = emc_receive,
.cleanup = emc_cleanup,
.link_status_changed = emc_set_link,
};
static void npcm7xx_emc_realize(DeviceState *dev, Error **errp)
{
NPCM7xxEMCState *emc = NPCM7XX_EMC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(emc);
memory_region_init_io(&emc->iomem, OBJECT(emc), &npcm7xx_emc_ops, emc,
TYPE_NPCM7XX_EMC, 4 * KiB);
sysbus_init_mmio(sbd, &emc->iomem);
sysbus_init_irq(sbd, &emc->tx_irq);
sysbus_init_irq(sbd, &emc->rx_irq);
qemu_macaddr_default_if_unset(&emc->conf.macaddr);
emc->nic = qemu_new_nic(&net_npcm7xx_emc_info, &emc->conf,
object_get_typename(OBJECT(dev)), dev->id,
&dev->mem_reentrancy_guard, emc);
qemu_format_nic_info_str(qemu_get_queue(emc->nic), emc->conf.macaddr.a);
}
static void npcm7xx_emc_unrealize(DeviceState *dev)
{
NPCM7xxEMCState *emc = NPCM7XX_EMC(dev);
qemu_del_nic(emc->nic);
}
static const VMStateDescription vmstate_npcm7xx_emc = {
.name = TYPE_NPCM7XX_EMC,
.version_id = 0,
.minimum_version_id = 0,
.fields = (const VMStateField[]) {
VMSTATE_UINT8(emc_num, NPCM7xxEMCState),
VMSTATE_UINT32_ARRAY(regs, NPCM7xxEMCState, NPCM7XX_NUM_EMC_REGS),
VMSTATE_BOOL(tx_active, NPCM7xxEMCState),
VMSTATE_BOOL(rx_active, NPCM7xxEMCState),
VMSTATE_END_OF_LIST(),
},
};
static Property npcm7xx_emc_properties[] = {
DEFINE_NIC_PROPERTIES(NPCM7xxEMCState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void npcm7xx_emc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "NPCM7xx EMC Controller";
dc->realize = npcm7xx_emc_realize;
dc->unrealize = npcm7xx_emc_unrealize;
device_class_set_legacy_reset(dc, npcm7xx_emc_reset);
dc->vmsd = &vmstate_npcm7xx_emc;
device_class_set_props(dc, npcm7xx_emc_properties);
}
static const TypeInfo npcm7xx_emc_info = {
.name = TYPE_NPCM7XX_EMC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCM7xxEMCState),
.class_init = npcm7xx_emc_class_init,
};
static void npcm7xx_emc_register_type(void)
{
type_register_static(&npcm7xx_emc_info);
}
type_init(npcm7xx_emc_register_type)