You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/net/e1000x_common.c

340 lines
10 KiB
C

/*
* QEMU e1000(e) emulation - shared code
*
* Copyright (c) 2008 Qumranet
*
* Based on work done by:
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "hw/net/mii.h"
#include "hw/pci/pci_device.h"
#include "net/eth.h"
#include "net/net.h"
#include "e1000_common.h"
#include "e1000x_common.h"
#include "trace.h"
bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
{
bool link_up = mac[STATUS] & E1000_STATUS_LU;
bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
if (!link_up || !rx_enabled || !pci_master) {
trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
return false;
}
return true;
}
bool e1000x_is_vlan_packet(const void *buf, uint16_t vet)
{
uint16_t eth_proto = lduw_be_p(&PKT_GET_ETH_HDR(buf)->h_proto);
bool res = (eth_proto == vet);
trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
return res;
}
bool e1000x_rx_vlan_filter(uint32_t *mac, const struct vlan_header *vhdr)
{
if (e1000x_vlan_rx_filter_enabled(mac)) {
uint16_t vid = lduw_be_p(&vhdr->h_tci);
uint32_t vfta =
ldl_le_p((uint32_t *)(mac + VFTA) +
((vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK));
if ((vfta & (1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK))) == 0) {
trace_e1000x_rx_flt_vlan_mismatch(vid);
return false;
}
trace_e1000x_rx_flt_vlan_match(vid);
}
return true;
}
bool e1000x_rx_group_filter(uint32_t *mac, const struct eth_header *ehdr)
{
static const int mta_shift[] = { 4, 3, 2, 0 };
uint32_t f, ra[2], *rp, rctl = mac[RCTL];
if (is_broadcast_ether_addr(ehdr->h_dest)) {
if (rctl & E1000_RCTL_BAM) {
return true;
}
} else if (is_multicast_ether_addr(ehdr->h_dest)) {
if (rctl & E1000_RCTL_MPE) {
return true;
}
} else {
if (rctl & E1000_RCTL_UPE) {
return true;
}
}
for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
if (!(rp[1] & E1000_RAH_AV)) {
continue;
}
ra[0] = cpu_to_le32(rp[0]);
ra[1] = cpu_to_le32(rp[1]);
if (!memcmp(ehdr->h_dest, (uint8_t *)ra, ETH_ALEN)) {
trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
MAC_ARG(ehdr->h_dest));
return true;
}
}
trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(ehdr->h_dest));
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
f = (((ehdr->h_dest[5] << 8) | ehdr->h_dest[4]) >> f) & 0xfff;
if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
return true;
}
trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(ehdr->h_dest),
(rctl >> E1000_RCTL_MO_SHIFT) & 3,
f >> 5,
mac[MTA + (f >> 5)]);
return false;
}
bool e1000x_hw_rx_enabled(uint32_t *mac)
{
if (!(mac[STATUS] & E1000_STATUS_LU)) {
trace_e1000x_rx_link_down(mac[STATUS]);
return false;
}
if (!(mac[RCTL] & E1000_RCTL_EN)) {
trace_e1000x_rx_disabled(mac[RCTL]);
return false;
}
return true;
}
bool e1000x_is_oversized(uint32_t *mac, size_t size)
{
size_t header_size = sizeof(struct eth_header) + sizeof(struct vlan_header);
/* this is the size past which hardware will
drop packets when setting LPE=0 */
size_t maximum_short_size = header_size + ETH_MTU;
/* this is the size past which hardware will
drop packets when setting LPE=1 */
size_t maximum_large_size = 16 * KiB - ETH_FCS_LEN;
if ((size > maximum_large_size ||
(size > maximum_short_size && !(mac[RCTL] & E1000_RCTL_LPE)))
&& !(mac[RCTL] & E1000_RCTL_SBP)) {
e1000x_inc_reg_if_not_full(mac, ROC);
trace_e1000x_rx_oversized(size);
return true;
}
return false;
}
void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
{
e1000x_update_regs_on_link_down(mac, phy);
trace_e1000x_link_negotiation_start();
timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
}
void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
uint8_t *mac_addr)
{
int i;
mac_regs[RA] = 0;
mac_regs[RA + 1] = E1000_RAH_AV;
for (i = 0; i < 4; i++) {
mac_regs[RA] |= mac_addr[i] << (8 * i);
mac_regs[RA + 1] |=
(i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
}
qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
}
void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
{
e1000x_update_regs_on_link_up(mac, phy);
phy[MII_ANLPAR] |= MII_ANLPAR_ACK;
phy[MII_BMSR] |= MII_BMSR_AN_COMP;
trace_e1000x_link_negotiation_done();
}
void
e1000x_core_prepare_eeprom(uint16_t *eeprom,
const uint16_t *templ,
uint32_t templ_size,
uint16_t dev_id,
const uint8_t *macaddr)
{
uint16_t checksum = 0;
int i;
memmove(eeprom, templ, templ_size);
for (i = 0; i < 3; i++) {
eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
}
eeprom[11] = eeprom[13] = dev_id;
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
checksum += eeprom[i];
}
checksum = (uint16_t) EEPROM_SUM - checksum;
eeprom[EEPROM_CHECKSUM_REG] = checksum;
}
uint32_t
e1000x_rxbufsize(uint32_t rctl)
{
rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
switch (rctl) {
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
return 16384;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
return 8192;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
return 4096;
case E1000_RCTL_SZ_1024:
return 1024;
case E1000_RCTL_SZ_512:
return 512;
case E1000_RCTL_SZ_256:
return 256;
}
return 2048;
}
void
e1000x_update_rx_total_stats(uint32_t *mac,
eth_pkt_types_e pkt_type,
size_t pkt_size,
size_t pkt_fcs_size)
{
static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
PRC1023, PRC1522 };
e1000x_increase_size_stats(mac, PRCregs, pkt_fcs_size);
e1000x_inc_reg_if_not_full(mac, TPR);
e1000x_inc_reg_if_not_full(mac, GPRC);
/* TOR - Total Octets Received:
* This register includes bytes received in a packet from the <Destination
* Address> field through the <CRC> field, inclusively.
* Always include FCS length (4) in size.
*/
e1000x_grow_8reg_if_not_full(mac, TORL, pkt_size + 4);
e1000x_grow_8reg_if_not_full(mac, GORCL, pkt_size + 4);
switch (pkt_type) {
case ETH_PKT_BCAST:
e1000x_inc_reg_if_not_full(mac, BPRC);
break;
case ETH_PKT_MCAST:
e1000x_inc_reg_if_not_full(mac, MPRC);
break;
default:
break;
}
}
void
e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
{
if (size > 1023) {
e1000x_inc_reg_if_not_full(mac, size_regs[5]);
} else if (size > 511) {
e1000x_inc_reg_if_not_full(mac, size_regs[4]);
} else if (size > 255) {
e1000x_inc_reg_if_not_full(mac, size_regs[3]);
} else if (size > 127) {
e1000x_inc_reg_if_not_full(mac, size_regs[2]);
} else if (size > 64) {
e1000x_inc_reg_if_not_full(mac, size_regs[1]);
} else if (size == 64) {
e1000x_inc_reg_if_not_full(mac, size_regs[0]);
}
}
void
e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
e1000x_txd_props *props)
{
uint32_t op = le32_to_cpu(d->cmd_and_length);
props->ipcss = d->lower_setup.ip_fields.ipcss;
props->ipcso = d->lower_setup.ip_fields.ipcso;
props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
props->tucss = d->upper_setup.tcp_fields.tucss;
props->tucso = d->upper_setup.tcp_fields.tucso;
props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
props->paylen = op & 0xfffff;
props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
}
void e1000x_timestamp(uint32_t *mac, int64_t timadj, size_t lo, size_t hi)
{
int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint32_t timinca = mac[TIMINCA];
uint32_t incvalue = timinca & E1000_TIMINCA_INCVALUE_MASK;
uint32_t incperiod = MAX(timinca >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
int64_t timestamp = timadj + muldiv64(ns, incvalue, incperiod * 16);
mac[lo] = timestamp & 0xffffffff;
mac[hi] = timestamp >> 32;
}
void e1000x_set_timinca(uint32_t *mac, int64_t *timadj, uint32_t val)
{
int64_t ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
uint32_t old_val = mac[TIMINCA];
uint32_t old_incvalue = old_val & E1000_TIMINCA_INCVALUE_MASK;
uint32_t old_incperiod = MAX(old_val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
uint32_t incvalue = val & E1000_TIMINCA_INCVALUE_MASK;
uint32_t incperiod = MAX(val >> E1000_TIMINCA_INCPERIOD_SHIFT, 1);
mac[TIMINCA] = val;
*timadj += (muldiv64(ns, incvalue, incperiod) - muldiv64(ns, old_incvalue, old_incperiod)) / 16;
}