You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/net/dp8393x.c

968 lines
28 KiB
C

/*
* QEMU NS SONIC DP8393x netcard
*
* Copyright (c) 2008-2009 Herve Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/net/dp8393x.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "net/net.h"
#include "qapi/error.h"
#include "qemu/module.h"
#include "qemu/timer.h"
#include <zlib.h> /* for crc32 */
#include "qom/object.h"
#include "trace.h"
static const char *reg_names[] = {
"CR", "DCR", "RCR", "TCR", "IMR", "ISR", "UTDA", "CTDA",
"TPS", "TFC", "TSA0", "TSA1", "TFS", "URDA", "CRDA", "CRBA0",
"CRBA1", "RBWC0", "RBWC1", "EOBC", "URRA", "RSA", "REA", "RRP",
"RWP", "TRBA0", "TRBA1", "0x1b", "0x1c", "0x1d", "0x1e", "LLFA",
"TTDA", "CEP", "CAP2", "CAP1", "CAP0", "CE", "CDP", "CDC",
"SR", "WT0", "WT1", "RSC", "CRCT", "FAET", "MPT", "MDT",
"0x30", "0x31", "0x32", "0x33", "0x34", "0x35", "0x36", "0x37",
"0x38", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "DCR2" };
#define SONIC_CR 0x00
#define SONIC_DCR 0x01
#define SONIC_RCR 0x02
#define SONIC_TCR 0x03
#define SONIC_IMR 0x04
#define SONIC_ISR 0x05
#define SONIC_UTDA 0x06
#define SONIC_CTDA 0x07
#define SONIC_TPS 0x08
#define SONIC_TFC 0x09
#define SONIC_TSA0 0x0a
#define SONIC_TSA1 0x0b
#define SONIC_TFS 0x0c
#define SONIC_URDA 0x0d
#define SONIC_CRDA 0x0e
#define SONIC_CRBA0 0x0f
#define SONIC_CRBA1 0x10
#define SONIC_RBWC0 0x11
#define SONIC_RBWC1 0x12
#define SONIC_EOBC 0x13
#define SONIC_URRA 0x14
#define SONIC_RSA 0x15
#define SONIC_REA 0x16
#define SONIC_RRP 0x17
#define SONIC_RWP 0x18
#define SONIC_TRBA0 0x19
#define SONIC_TRBA1 0x1a
#define SONIC_LLFA 0x1f
#define SONIC_TTDA 0x20
#define SONIC_CEP 0x21
#define SONIC_CAP2 0x22
#define SONIC_CAP1 0x23
#define SONIC_CAP0 0x24
#define SONIC_CE 0x25
#define SONIC_CDP 0x26
#define SONIC_CDC 0x27
#define SONIC_SR 0x28
#define SONIC_WT0 0x29
#define SONIC_WT1 0x2a
#define SONIC_RSC 0x2b
#define SONIC_CRCT 0x2c
#define SONIC_FAET 0x2d
#define SONIC_MPT 0x2e
#define SONIC_MDT 0x2f
#define SONIC_DCR2 0x3f
#define SONIC_CR_HTX 0x0001
#define SONIC_CR_TXP 0x0002
#define SONIC_CR_RXDIS 0x0004
#define SONIC_CR_RXEN 0x0008
#define SONIC_CR_STP 0x0010
#define SONIC_CR_ST 0x0020
#define SONIC_CR_RST 0x0080
#define SONIC_CR_RRRA 0x0100
#define SONIC_CR_LCAM 0x0200
#define SONIC_CR_MASK 0x03bf
#define SONIC_DCR_DW 0x0020
#define SONIC_DCR_LBR 0x2000
#define SONIC_DCR_EXBUS 0x8000
#define SONIC_RCR_PRX 0x0001
#define SONIC_RCR_LBK 0x0002
#define SONIC_RCR_FAER 0x0004
#define SONIC_RCR_CRCR 0x0008
#define SONIC_RCR_CRS 0x0020
#define SONIC_RCR_LPKT 0x0040
#define SONIC_RCR_BC 0x0080
#define SONIC_RCR_MC 0x0100
#define SONIC_RCR_LB0 0x0200
#define SONIC_RCR_LB1 0x0400
#define SONIC_RCR_AMC 0x0800
#define SONIC_RCR_PRO 0x1000
#define SONIC_RCR_BRD 0x2000
#define SONIC_RCR_RNT 0x4000
#define SONIC_TCR_PTX 0x0001
#define SONIC_TCR_BCM 0x0002
#define SONIC_TCR_FU 0x0004
#define SONIC_TCR_EXC 0x0040
#define SONIC_TCR_CRSL 0x0080
#define SONIC_TCR_NCRS 0x0100
#define SONIC_TCR_EXD 0x0400
#define SONIC_TCR_CRCI 0x2000
#define SONIC_TCR_PINT 0x8000
#define SONIC_ISR_RBAE 0x0010
#define SONIC_ISR_RBE 0x0020
#define SONIC_ISR_RDE 0x0040
#define SONIC_ISR_TC 0x0080
#define SONIC_ISR_TXDN 0x0200
#define SONIC_ISR_PKTRX 0x0400
#define SONIC_ISR_PINT 0x0800
#define SONIC_ISR_LCD 0x1000
#define SONIC_DESC_EOL 0x0001
#define SONIC_DESC_ADDR 0xFFFE
/*
* Accessor functions for values which are formed by
* concatenating two 16 bit device registers. By putting these
* in their own functions with a uint32_t return type we avoid the
* pitfall of implicit sign extension where ((x << 16) | y) is a
* signed 32 bit integer that might get sign-extended to a 64 bit integer.
*/
static uint32_t dp8393x_cdp(dp8393xState *s)
{
return (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP];
}
static uint32_t dp8393x_crba(dp8393xState *s)
{
return (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0];
}
static uint32_t dp8393x_crda(dp8393xState *s)
{
return (s->regs[SONIC_URDA] << 16) |
(s->regs[SONIC_CRDA] & SONIC_DESC_ADDR);
}
static uint32_t dp8393x_rbwc(dp8393xState *s)
{
return (s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0];
}
static uint32_t dp8393x_rrp(dp8393xState *s)
{
return (s->regs[SONIC_URRA] << 16) | s->regs[SONIC_RRP];
}
static uint32_t dp8393x_tsa(dp8393xState *s)
{
return (s->regs[SONIC_TSA1] << 16) | s->regs[SONIC_TSA0];
}
static uint32_t dp8393x_ttda(dp8393xState *s)
{
return (s->regs[SONIC_UTDA] << 16) |
(s->regs[SONIC_TTDA] & SONIC_DESC_ADDR);
}
static uint32_t dp8393x_wt(dp8393xState *s)
{
return s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0];
}
static uint16_t dp8393x_get(dp8393xState *s, hwaddr addr, int offset)
{
const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
uint16_t val;
if (s->regs[SONIC_DCR] & SONIC_DCR_DW) {
addr += offset << 2;
if (s->big_endian) {
val = address_space_ldl_be(&s->as, addr, attrs, NULL);
} else {
val = address_space_ldl_le(&s->as, addr, attrs, NULL);
}
} else {
addr += offset << 1;
if (s->big_endian) {
val = address_space_lduw_be(&s->as, addr, attrs, NULL);
} else {
val = address_space_lduw_le(&s->as, addr, attrs, NULL);
}
}
return val;
}
static void dp8393x_put(dp8393xState *s,
hwaddr addr, int offset, uint16_t val)
{
const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
if (s->regs[SONIC_DCR] & SONIC_DCR_DW) {
addr += offset << 2;
if (s->big_endian) {
address_space_stl_be(&s->as, addr, val, attrs, NULL);
} else {
address_space_stl_le(&s->as, addr, val, attrs, NULL);
}
} else {
addr += offset << 1;
if (s->big_endian) {
address_space_stw_be(&s->as, addr, val, attrs, NULL);
} else {
address_space_stw_le(&s->as, addr, val, attrs, NULL);
}
}
}
static void dp8393x_update_irq(dp8393xState *s)
{
int level = (s->regs[SONIC_IMR] & s->regs[SONIC_ISR]) ? 1 : 0;
if (level != s->irq_level) {
s->irq_level = level;
if (level) {
trace_dp8393x_raise_irq(s->regs[SONIC_ISR]);
} else {
trace_dp8393x_lower_irq();
}
}
qemu_set_irq(s->irq, level);
}
static void dp8393x_do_load_cam(dp8393xState *s)
{
int width, size;
uint16_t index;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
while (s->regs[SONIC_CDC] & 0x1f) {
/* Fill current entry */
index = dp8393x_get(s, dp8393x_cdp(s), 0) & 0xf;
s->cam[index][0] = dp8393x_get(s, dp8393x_cdp(s), 1);
s->cam[index][1] = dp8393x_get(s, dp8393x_cdp(s), 2);
s->cam[index][2] = dp8393x_get(s, dp8393x_cdp(s), 3);
trace_dp8393x_load_cam(index,
s->cam[index][0] >> 8, s->cam[index][0] & 0xff,
s->cam[index][1] >> 8, s->cam[index][1] & 0xff,
s->cam[index][2] >> 8, s->cam[index][2] & 0xff);
/* Move to next entry */
s->regs[SONIC_CDC]--;
s->regs[SONIC_CDP] += size;
}
/* Read CAM enable */
s->regs[SONIC_CE] = dp8393x_get(s, dp8393x_cdp(s), 0);
trace_dp8393x_load_cam_done(s->regs[SONIC_CE]);
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_LCAM;
s->regs[SONIC_ISR] |= SONIC_ISR_LCD;
dp8393x_update_irq(s);
}
static void dp8393x_do_read_rra(dp8393xState *s)
{
int width, size;
/* Read memory */
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
/* Update SONIC registers */
s->regs[SONIC_CRBA0] = dp8393x_get(s, dp8393x_rrp(s), 0);
s->regs[SONIC_CRBA1] = dp8393x_get(s, dp8393x_rrp(s), 1);
s->regs[SONIC_RBWC0] = dp8393x_get(s, dp8393x_rrp(s), 2);
s->regs[SONIC_RBWC1] = dp8393x_get(s, dp8393x_rrp(s), 3);
trace_dp8393x_read_rra_regs(s->regs[SONIC_CRBA0], s->regs[SONIC_CRBA1],
s->regs[SONIC_RBWC0], s->regs[SONIC_RBWC1]);
/* Go to next entry */
s->regs[SONIC_RRP] += size;
/* Handle wrap */
if (s->regs[SONIC_RRP] == s->regs[SONIC_REA]) {
s->regs[SONIC_RRP] = s->regs[SONIC_RSA];
}
/* Warn the host if CRBA now has the last available resource */
if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP]) {
s->regs[SONIC_ISR] |= SONIC_ISR_RBE;
dp8393x_update_irq(s);
}
/* Allow packet reception */
s->last_rba_is_full = false;
}
static void dp8393x_do_software_reset(dp8393xState *s)
{
timer_del(s->watchdog);
s->regs[SONIC_CR] &= ~(SONIC_CR_LCAM | SONIC_CR_RRRA | SONIC_CR_TXP |
SONIC_CR_HTX);
s->regs[SONIC_CR] |= SONIC_CR_RST | SONIC_CR_RXDIS;
}
static void dp8393x_set_next_tick(dp8393xState *s)
{
uint32_t ticks;
int64_t delay;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
timer_del(s->watchdog);
return;
}
ticks = dp8393x_wt(s);
s->wt_last_update = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
delay = NANOSECONDS_PER_SECOND * ticks / 5000000;
timer_mod(s->watchdog, s->wt_last_update + delay);
}
static void dp8393x_update_wt_regs(dp8393xState *s)
{
int64_t elapsed;
uint32_t val;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
timer_del(s->watchdog);
return;
}
elapsed = s->wt_last_update - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
val = dp8393x_wt(s);
val -= elapsed / 5000000;
s->regs[SONIC_WT1] = (val >> 16) & 0xffff;
s->regs[SONIC_WT0] = (val >> 0) & 0xffff;
dp8393x_set_next_tick(s);
}
static void dp8393x_do_start_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_STP;
dp8393x_set_next_tick(s);
}
static void dp8393x_do_stop_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_ST;
dp8393x_update_wt_regs(s);
}
static bool dp8393x_can_receive(NetClientState *nc);
static void dp8393x_do_receiver_enable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXDIS;
if (dp8393x_can_receive(s->nic->ncs)) {
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
}
static void dp8393x_do_receiver_disable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXEN;
}
static void dp8393x_do_transmit_packets(dp8393xState *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
int tx_len, len;
uint16_t i;
while (1) {
/* Read memory */
s->regs[SONIC_TTDA] = s->regs[SONIC_CTDA];
trace_dp8393x_transmit_packet(dp8393x_ttda(s));
tx_len = 0;
/* Update registers */
s->regs[SONIC_TCR] = dp8393x_get(s, dp8393x_ttda(s), 1) & 0xf000;
s->regs[SONIC_TPS] = dp8393x_get(s, dp8393x_ttda(s), 2);
s->regs[SONIC_TFC] = dp8393x_get(s, dp8393x_ttda(s), 3);
s->regs[SONIC_TSA0] = dp8393x_get(s, dp8393x_ttda(s), 4);
s->regs[SONIC_TSA1] = dp8393x_get(s, dp8393x_ttda(s), 5);
s->regs[SONIC_TFS] = dp8393x_get(s, dp8393x_ttda(s), 6);
/* Handle programmable interrupt */
if (s->regs[SONIC_TCR] & SONIC_TCR_PINT) {
s->regs[SONIC_ISR] |= SONIC_ISR_PINT;
} else {
s->regs[SONIC_ISR] &= ~SONIC_ISR_PINT;
}
for (i = 0; i < s->regs[SONIC_TFC]; ) {
/* Append fragment */
len = s->regs[SONIC_TFS];
if (tx_len + len > sizeof(s->tx_buffer)) {
len = sizeof(s->tx_buffer) - tx_len;
}
address_space_read(&s->as, dp8393x_tsa(s), MEMTXATTRS_UNSPECIFIED,
&s->tx_buffer[tx_len], len);
tx_len += len;
i++;
if (i != s->regs[SONIC_TFC]) {
/* Read next fragment details */
s->regs[SONIC_TSA0] = dp8393x_get(s, dp8393x_ttda(s),
4 + 3 * i);
s->regs[SONIC_TSA1] = dp8393x_get(s, dp8393x_ttda(s),
5 + 3 * i);
s->regs[SONIC_TFS] = dp8393x_get(s, dp8393x_ttda(s),
6 + 3 * i);
}
}
/* Handle Ethernet checksum */
if (!(s->regs[SONIC_TCR] & SONIC_TCR_CRCI)) {
/*
* Don't append FCS there, to look like slirp packets
* which don't have one
*/
} else {
/* Remove existing FCS */
tx_len -= 4;
if (tx_len < 0) {
trace_dp8393x_transmit_txlen_error(tx_len);
break;
}
}
if (s->regs[SONIC_RCR] & (SONIC_RCR_LB1 | SONIC_RCR_LB0)) {
/* Loopback */
s->regs[SONIC_TCR] |= SONIC_TCR_CRSL;
if (nc->info->can_receive(nc)) {
s->loopback_packet = 1;
qemu_receive_packet(nc, s->tx_buffer, tx_len);
}
} else {
/* Transmit packet */
qemu_send_packet(nc, s->tx_buffer, tx_len);
}
s->regs[SONIC_TCR] |= SONIC_TCR_PTX;
/* Write status */
dp8393x_put(s, dp8393x_ttda(s), 0, s->regs[SONIC_TCR] & 0x0fff);
if (!(s->regs[SONIC_CR] & SONIC_CR_HTX)) {
/* Read footer of packet */
s->regs[SONIC_CTDA] = dp8393x_get(s, dp8393x_ttda(s),
4 + 3 * s->regs[SONIC_TFC]);
if (s->regs[SONIC_CTDA] & SONIC_DESC_EOL) {
/* EOL detected */
break;
}
}
}
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_TXP;
s->regs[SONIC_ISR] |= SONIC_ISR_TXDN;
dp8393x_update_irq(s);
}
static void dp8393x_do_halt_transmission(dp8393xState *s)
{
/* Nothing to do */
}
static void dp8393x_do_command(dp8393xState *s, uint16_t command)
{
if ((s->regs[SONIC_CR] & SONIC_CR_RST) && !(command & SONIC_CR_RST)) {
s->regs[SONIC_CR] &= ~SONIC_CR_RST;
return;
}
s->regs[SONIC_CR] |= (command & SONIC_CR_MASK);
if (command & SONIC_CR_HTX) {
dp8393x_do_halt_transmission(s);
}
if (command & SONIC_CR_TXP) {
dp8393x_do_transmit_packets(s);
}
if (command & SONIC_CR_RXDIS) {
dp8393x_do_receiver_disable(s);
}
if (command & SONIC_CR_RXEN) {
dp8393x_do_receiver_enable(s);
}
if (command & SONIC_CR_STP) {
dp8393x_do_stop_timer(s);
}
if (command & SONIC_CR_ST) {
dp8393x_do_start_timer(s);
}
if (command & SONIC_CR_RST) {
dp8393x_do_software_reset(s);
}
if (command & SONIC_CR_RRRA) {
dp8393x_do_read_rra(s);
s->regs[SONIC_CR] &= ~SONIC_CR_RRRA;
}
if (command & SONIC_CR_LCAM) {
dp8393x_do_load_cam(s);
}
}
static uint64_t dp8393x_read(void *opaque, hwaddr addr, unsigned int size)
{
dp8393xState *s = opaque;
int reg = addr >> s->it_shift;
uint16_t val = 0;
switch (reg) {
/* Update data before reading it */
case SONIC_WT0:
case SONIC_WT1:
dp8393x_update_wt_regs(s);
val = s->regs[reg];
break;
/* Accept read to some registers only when in reset mode */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
val = s->cam[s->regs[SONIC_CEP] & 0xf][SONIC_CAP0 - reg];
}
break;
/* All other registers have no special constraints */
default:
val = s->regs[reg];
}
trace_dp8393x_read(reg, reg_names[reg], val, size);
return val;
}
static void dp8393x_write(void *opaque, hwaddr addr, uint64_t val,
unsigned int size)
{
dp8393xState *s = opaque;
int reg = addr >> s->it_shift;
trace_dp8393x_write(reg, reg_names[reg], val, size);
switch (reg) {
/* Command register */
case SONIC_CR:
dp8393x_do_command(s, val);
break;
/* Prevent write to read-only registers */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
case SONIC_SR:
case SONIC_MDT:
trace_dp8393x_write_invalid(reg);
break;
/* Accept write to some registers only when in reset mode */
case SONIC_DCR:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xbfff;
} else {
trace_dp8393x_write_invalid_dcr("DCR");
}
break;
case SONIC_DCR2:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xf017;
} else {
trace_dp8393x_write_invalid_dcr("DCR2");
}
break;
/* 12 lower bytes are Read Only */
case SONIC_TCR:
s->regs[reg] = val & 0xf000;
break;
/* 9 lower bytes are Read Only */
case SONIC_RCR:
s->regs[reg] = val & 0xffe0;
break;
/* Ignore most significant bit */
case SONIC_IMR:
s->regs[reg] = val & 0x7fff;
dp8393x_update_irq(s);
break;
/* Clear bits by writing 1 to them */
case SONIC_ISR:
val &= s->regs[reg];
s->regs[reg] &= ~val;
if (val & SONIC_ISR_RBE) {
dp8393x_do_read_rra(s);
}
dp8393x_update_irq(s);
break;
/* The guest is required to store aligned pointers here */
case SONIC_RSA:
case SONIC_REA:
case SONIC_RRP:
case SONIC_RWP:
if (s->regs[SONIC_DCR] & SONIC_DCR_DW) {
s->regs[reg] = val & 0xfffc;
} else {
s->regs[reg] = val & 0xfffe;
}
break;
/* Invert written value for some registers */
case SONIC_CRCT:
case SONIC_FAET:
case SONIC_MPT:
s->regs[reg] = val ^ 0xffff;
break;
/* All other registers have no special contrainst */
default:
s->regs[reg] = val;
}
if (reg == SONIC_WT0 || reg == SONIC_WT1) {
dp8393x_set_next_tick(s);
}
}
/*
* Since .impl.max_access_size is effectively controlled by the it_shift
* property, leave it unspecified for now to allow the memory API to
* correctly zero extend the 16-bit register values to the access size up to and
* including it_shift.
*/
static const MemoryRegionOps dp8393x_ops = {
.read = dp8393x_read,
.write = dp8393x_write,
.impl.min_access_size = 2,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void dp8393x_watchdog(void *opaque)
{
dp8393xState *s = opaque;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
return;
}
s->regs[SONIC_WT1] = 0xffff;
s->regs[SONIC_WT0] = 0xffff;
dp8393x_set_next_tick(s);
/* Signal underflow */
s->regs[SONIC_ISR] |= SONIC_ISR_TC;
dp8393x_update_irq(s);
}
static bool dp8393x_can_receive(NetClientState *nc)
{
dp8393xState *s = qemu_get_nic_opaque(nc);
return !!(s->regs[SONIC_CR] & SONIC_CR_RXEN);
}
static int dp8393x_receive_filter(dp8393xState *s, const uint8_t * buf,
int size)
{
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
int i;
/* Check promiscuous mode */
if ((s->regs[SONIC_RCR] & SONIC_RCR_PRO) && (buf[0] & 1) == 0) {
return 0;
}
/* Check multicast packets */
if ((s->regs[SONIC_RCR] & SONIC_RCR_AMC) && (buf[0] & 1) == 1) {
return SONIC_RCR_MC;
}
/* Check broadcast */
if ((s->regs[SONIC_RCR] & SONIC_RCR_BRD) &&
!memcmp(buf, bcast, sizeof(bcast))) {
return SONIC_RCR_BC;
}
/* Check CAM */
for (i = 0; i < 16; i++) {
if (s->regs[SONIC_CE] & (1 << i)) {
/* Entry enabled */
if (!memcmp(buf, s->cam[i], sizeof(s->cam[i]))) {
return 0;
}
}
}
return -1;
}
static ssize_t dp8393x_receive(NetClientState *nc, const uint8_t * buf,
size_t pkt_size)
{
dp8393xState *s = qemu_get_nic_opaque(nc);
int packet_type;
uint32_t available, address;
int rx_len, padded_len;
uint32_t checksum;
int size;
s->regs[SONIC_RCR] &= ~(SONIC_RCR_PRX | SONIC_RCR_LBK | SONIC_RCR_FAER |
SONIC_RCR_CRCR | SONIC_RCR_LPKT | SONIC_RCR_BC | SONIC_RCR_MC);
if (s->last_rba_is_full) {
return pkt_size;
}
rx_len = pkt_size + sizeof(checksum);
if (s->regs[SONIC_DCR] & SONIC_DCR_DW) {
padded_len = ((rx_len - 1) | 3) + 1;
} else {
padded_len = ((rx_len - 1) | 1) + 1;
}
if (padded_len > dp8393x_rbwc(s) * 2) {
trace_dp8393x_receive_oversize(pkt_size);
s->regs[SONIC_ISR] |= SONIC_ISR_RBAE;
dp8393x_update_irq(s);
s->regs[SONIC_RCR] |= SONIC_RCR_LPKT;
goto done;
}
packet_type = dp8393x_receive_filter(s, buf, pkt_size);
if (packet_type < 0) {
trace_dp8393x_receive_not_netcard();
return -1;
}
/* Check for EOL */
if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) {
/* Are we still in resource exhaustion? */
s->regs[SONIC_LLFA] = dp8393x_get(s, dp8393x_crda(s), 5);
if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) {
/* Still EOL ; stop reception */
return -1;
}
/* Link has been updated by host */
/* Clear in_use */
dp8393x_put(s, dp8393x_crda(s), 6, 0x0000);
/* Move to next descriptor */
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX;
}
/* Save current position */
s->regs[SONIC_TRBA1] = s->regs[SONIC_CRBA1];
s->regs[SONIC_TRBA0] = s->regs[SONIC_CRBA0];
/* Calculate the ethernet checksum */
checksum = cpu_to_le32(crc32(0, buf, pkt_size));
/* Put packet into RBA */
trace_dp8393x_receive_packet(dp8393x_crba(s));
address = dp8393x_crba(s);
address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED,
buf, pkt_size);
address += pkt_size;
/* Put frame checksum into RBA */
address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED,
&checksum, sizeof(checksum));
address += sizeof(checksum);
/* Pad short packets to keep pointers aligned */
if (rx_len < padded_len) {
size = padded_len - rx_len;
address_space_write(&s->as, address, MEMTXATTRS_UNSPECIFIED,
"\xFF\xFF\xFF", size);
address += size;
}
s->regs[SONIC_CRBA1] = address >> 16;
s->regs[SONIC_CRBA0] = address & 0xffff;
available = dp8393x_rbwc(s);
available -= padded_len >> 1;
s->regs[SONIC_RBWC1] = available >> 16;
s->regs[SONIC_RBWC0] = available & 0xffff;
/* Update status */
if (dp8393x_rbwc(s) < s->regs[SONIC_EOBC]) {
s->regs[SONIC_RCR] |= SONIC_RCR_LPKT;
}
s->regs[SONIC_RCR] |= packet_type;
s->regs[SONIC_RCR] |= SONIC_RCR_PRX;
if (s->loopback_packet) {
s->regs[SONIC_RCR] |= SONIC_RCR_LBK;
s->loopback_packet = 0;
}
/* Write status to memory */
trace_dp8393x_receive_write_status(dp8393x_crda(s));
dp8393x_put(s, dp8393x_crda(s), 0, s->regs[SONIC_RCR]); /* status */
dp8393x_put(s, dp8393x_crda(s), 1, rx_len); /* byte count */
dp8393x_put(s, dp8393x_crda(s), 2, s->regs[SONIC_TRBA0]); /* pkt_ptr0 */
dp8393x_put(s, dp8393x_crda(s), 3, s->regs[SONIC_TRBA1]); /* pkt_ptr1 */
dp8393x_put(s, dp8393x_crda(s), 4, s->regs[SONIC_RSC]); /* seq_no */
/* Check link field */
s->regs[SONIC_LLFA] = dp8393x_get(s, dp8393x_crda(s), 5);
if (s->regs[SONIC_LLFA] & SONIC_DESC_EOL) {
/* EOL detected */
s->regs[SONIC_ISR] |= SONIC_ISR_RDE;
} else {
/* Clear in_use */
dp8393x_put(s, dp8393x_crda(s), 6, 0x0000);
/* Move to next descriptor */
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX;
}
dp8393x_update_irq(s);
s->regs[SONIC_RSC] = (s->regs[SONIC_RSC] & 0xff00) |
((s->regs[SONIC_RSC] + 1) & 0x00ff);
done:
if (s->regs[SONIC_RCR] & SONIC_RCR_LPKT) {
if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP]) {
/* Stop packet reception */
s->last_rba_is_full = true;
} else {
/* Read next resource */
dp8393x_do_read_rra(s);
}
}
return pkt_size;
}
static void dp8393x_reset(DeviceState *dev)
{
dp8393xState *s = DP8393X(dev);
timer_del(s->watchdog);
memset(s->regs, 0, sizeof(s->regs));
s->regs[SONIC_SR] = 0x0004; /* only revision recognized by Linux/mips */
s->regs[SONIC_CR] = SONIC_CR_RST | SONIC_CR_STP | SONIC_CR_RXDIS;
s->regs[SONIC_DCR] &= ~(SONIC_DCR_EXBUS | SONIC_DCR_LBR);
s->regs[SONIC_RCR] &= ~(SONIC_RCR_LB0 | SONIC_RCR_LB1 | SONIC_RCR_BRD |
SONIC_RCR_RNT);
s->regs[SONIC_TCR] |= SONIC_TCR_NCRS | SONIC_TCR_PTX;
s->regs[SONIC_TCR] &= ~SONIC_TCR_BCM;
s->regs[SONIC_IMR] = 0;
s->regs[SONIC_ISR] = 0;
s->regs[SONIC_DCR2] = 0;
s->regs[SONIC_EOBC] = 0x02F8;
s->regs[SONIC_RSC] = 0;
s->regs[SONIC_CE] = 0;
s->regs[SONIC_RSC] = 0;
/* Network cable is connected */
s->regs[SONIC_RCR] |= SONIC_RCR_CRS;
dp8393x_update_irq(s);
}
static NetClientInfo net_dp83932_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = dp8393x_can_receive,
.receive = dp8393x_receive,
};
static void dp8393x_instance_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
dp8393xState *s = DP8393X(obj);
sysbus_init_mmio(sbd, &s->mmio);
sysbus_init_irq(sbd, &s->irq);
}
static void dp8393x_realize(DeviceState *dev, Error **errp)
{
dp8393xState *s = DP8393X(dev);
address_space_init(&s->as, s->dma_mr, "dp8393x");
memory_region_init_io(&s->mmio, OBJECT(dev), &dp8393x_ops, s,
"dp8393x-regs", SONIC_REG_COUNT << s->it_shift);
s->nic = qemu_new_nic(&net_dp83932_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id,
&dev->mem_reentrancy_guard, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
s->watchdog = timer_new_ns(QEMU_CLOCK_VIRTUAL, dp8393x_watchdog, s);
}
static const VMStateDescription vmstate_dp8393x = {
.name = "dp8393x",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField []) {
VMSTATE_UINT16_2DARRAY(cam, dp8393xState, 16, 3),
VMSTATE_UINT16_ARRAY(regs, dp8393xState, SONIC_REG_COUNT),
VMSTATE_END_OF_LIST()
}
};
static Property dp8393x_properties[] = {
DEFINE_NIC_PROPERTIES(dp8393xState, conf),
DEFINE_PROP_LINK("dma_mr", dp8393xState, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_PROP_UINT8("it_shift", dp8393xState, it_shift, 0),
DEFINE_PROP_BOOL("big_endian", dp8393xState, big_endian, false),
DEFINE_PROP_END_OF_LIST(),
};
static void dp8393x_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->realize = dp8393x_realize;
device_class_set_legacy_reset(dc, dp8393x_reset);
dc->vmsd = &vmstate_dp8393x;
device_class_set_props(dc, dp8393x_properties);
}
static const TypeInfo dp8393x_info = {
.name = TYPE_DP8393X,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(dp8393xState),
.instance_init = dp8393x_instance_init,
.class_init = dp8393x_class_init,
};
static void dp8393x_register_types(void)
{
type_register_static(&dp8393x_info);
}
type_init(dp8393x_register_types)