You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/m68k/next-kbd.c

338 lines
9.0 KiB
C

/*
* QEMU NeXT Keyboard/Mouse emulation
*
* Copyright (c) 2011 Bryce Lanham
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* This is admittedly hackish, but works well enough for basic input. Mouse
* support will be added once we can boot something that needs the mouse.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "hw/sysbus.h"
#include "hw/m68k/next-cube.h"
#include "ui/console.h"
#include "migration/vmstate.h"
#include "qom/object.h"
OBJECT_DECLARE_SIMPLE_TYPE(NextKBDState, NEXTKBD)
/* following definitions from next68k netbsd */
#define CSR_INT 0x00800000
#define CSR_DATA 0x00400000
#define KD_KEYMASK 0x007f
#define KD_DIRECTION 0x0080 /* pressed or released */
#define KD_CNTL 0x0100
#define KD_LSHIFT 0x0200
#define KD_RSHIFT 0x0400
#define KD_LCOMM 0x0800
#define KD_RCOMM 0x1000
#define KD_LALT 0x2000
#define KD_RALT 0x4000
#define KD_VALID 0x8000 /* only set for scancode keys ? */
#define KD_MODS 0x4f00
#define KBD_QUEUE_SIZE 256
typedef struct {
uint8_t data[KBD_QUEUE_SIZE];
int rptr, wptr, count;
} KBDQueue;
struct NextKBDState {
SysBusDevice sbd;
MemoryRegion mr;
KBDQueue queue;
uint16_t shift;
};
/* lots of magic numbers here */
static uint32_t kbd_read_byte(void *opaque, hwaddr addr)
{
switch (addr & 0x3) {
case 0x0: /* 0xe000 */
return 0x80 | 0x20;
case 0x1: /* 0xe001 */
return 0x80 | 0x40 | 0x20 | 0x10;
case 0x2: /* 0xe002 */
/* returning 0x40 caused mach to hang */
return 0x10 | 0x2 | 0x1;
default:
qemu_log_mask(LOG_UNIMP, "NeXT kbd read byte %"HWADDR_PRIx"\n", addr);
}
return 0;
}
static uint32_t kbd_read_word(void *opaque, hwaddr addr)
{
qemu_log_mask(LOG_UNIMP, "NeXT kbd read word %"HWADDR_PRIx"\n", addr);
return 0;
}
/* even more magic numbers */
static uint32_t kbd_read_long(void *opaque, hwaddr addr)
{
int key = 0;
NextKBDState *s = NEXTKBD(opaque);
KBDQueue *q = &s->queue;
switch (addr & 0xf) {
case 0x0: /* 0xe000 */
return 0xA0F09300;
case 0x8: /* 0xe008 */
/* get keycode from buffer */
if (q->count > 0) {
key = q->data[q->rptr];
if (++q->rptr == KBD_QUEUE_SIZE) {
q->rptr = 0;
}
q->count--;
if (s->shift) {
key |= s->shift;
}
if (key & 0x80) {
return 0;
} else {
return 0x10000000 | KD_VALID | key;
}
} else {
return 0;
}
default:
qemu_log_mask(LOG_UNIMP, "NeXT kbd read long %"HWADDR_PRIx"\n", addr);
return 0;
}
}
static uint64_t kbd_readfn(void *opaque, hwaddr addr, unsigned size)
{
switch (size) {
case 1:
return kbd_read_byte(opaque, addr);
case 2:
return kbd_read_word(opaque, addr);
case 4:
return kbd_read_long(opaque, addr);
default:
g_assert_not_reached();
}
}
static void kbd_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
qemu_log_mask(LOG_UNIMP, "NeXT kbd write: size=%u addr=0x%"HWADDR_PRIx
"val=0x%"PRIx64"\n", size, addr, value);
}
static const MemoryRegionOps kbd_ops = {
.read = kbd_readfn,
.write = kbd_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const int qcode_to_nextkbd_keycode[] = {
[Q_KEY_CODE_ESC] = 0x49,
[Q_KEY_CODE_1] = 0x4a,
[Q_KEY_CODE_2] = 0x4b,
[Q_KEY_CODE_3] = 0x4c,
[Q_KEY_CODE_4] = 0x4d,
[Q_KEY_CODE_5] = 0x50,
[Q_KEY_CODE_6] = 0x4f,
[Q_KEY_CODE_7] = 0x4e,
[Q_KEY_CODE_8] = 0x1e,
[Q_KEY_CODE_9] = 0x1f,
[Q_KEY_CODE_0] = 0x20,
[Q_KEY_CODE_MINUS] = 0x1d,
[Q_KEY_CODE_EQUAL] = 0x1c,
[Q_KEY_CODE_BACKSPACE] = 0x1b,
[Q_KEY_CODE_Q] = 0x42,
[Q_KEY_CODE_W] = 0x43,
[Q_KEY_CODE_E] = 0x44,
[Q_KEY_CODE_R] = 0x45,
[Q_KEY_CODE_T] = 0x48,
[Q_KEY_CODE_Y] = 0x47,
[Q_KEY_CODE_U] = 0x46,
[Q_KEY_CODE_I] = 0x06,
[Q_KEY_CODE_O] = 0x07,
[Q_KEY_CODE_P] = 0x08,
[Q_KEY_CODE_RET] = 0x2a,
[Q_KEY_CODE_A] = 0x39,
[Q_KEY_CODE_S] = 0x3a,
[Q_KEY_CODE_D] = 0x3b,
[Q_KEY_CODE_F] = 0x3c,
[Q_KEY_CODE_G] = 0x3d,
[Q_KEY_CODE_H] = 0x40,
[Q_KEY_CODE_J] = 0x3f,
[Q_KEY_CODE_K] = 0x3e,
[Q_KEY_CODE_L] = 0x2d,
[Q_KEY_CODE_SEMICOLON] = 0x2c,
[Q_KEY_CODE_APOSTROPHE] = 0x2b,
[Q_KEY_CODE_GRAVE_ACCENT] = 0x26,
[Q_KEY_CODE_Z] = 0x31,
[Q_KEY_CODE_X] = 0x32,
[Q_KEY_CODE_C] = 0x33,
[Q_KEY_CODE_V] = 0x34,
[Q_KEY_CODE_B] = 0x35,
[Q_KEY_CODE_N] = 0x37,
[Q_KEY_CODE_M] = 0x36,
[Q_KEY_CODE_COMMA] = 0x2e,
[Q_KEY_CODE_DOT] = 0x2f,
[Q_KEY_CODE_SLASH] = 0x30,
[Q_KEY_CODE_SPC] = 0x38,
};
static void nextkbd_put_keycode(NextKBDState *s, int keycode)
{
KBDQueue *q = &s->queue;
if (q->count >= KBD_QUEUE_SIZE) {
return;
}
q->data[q->wptr] = keycode;
if (++q->wptr == KBD_QUEUE_SIZE) {
q->wptr = 0;
}
q->count++;
/*
* might need to actually trigger the NeXT irq, but as the keyboard works
* at the moment, I'll worry about it later
*/
/* s->update_irq(s->update_arg, 1); */
}
static void nextkbd_event(DeviceState *dev, QemuConsole *src, InputEvent *evt)
{
NextKBDState *s = NEXTKBD(dev);
int qcode, keycode;
bool key_down = evt->u.key.data->down;
qcode = qemu_input_key_value_to_qcode(evt->u.key.data->key);
if (qcode >= ARRAY_SIZE(qcode_to_nextkbd_keycode)) {
return;
}
/* Shift key currently has no keycode, so handle separately */
if (qcode == Q_KEY_CODE_SHIFT) {
if (key_down) {
s->shift |= KD_LSHIFT;
} else {
s->shift &= ~KD_LSHIFT;
}
}
if (qcode == Q_KEY_CODE_SHIFT_R) {
if (key_down) {
s->shift |= KD_RSHIFT;
} else {
s->shift &= ~KD_RSHIFT;
}
}
keycode = qcode_to_nextkbd_keycode[qcode];
if (!keycode) {
return;
}
/* If key release event, create keyboard break code */
if (!key_down) {
keycode |= 0x80;
}
nextkbd_put_keycode(s, keycode);
}
static const QemuInputHandler nextkbd_handler = {
.name = "QEMU NeXT Keyboard",
.mask = INPUT_EVENT_MASK_KEY,
.event = nextkbd_event,
};
static void nextkbd_reset(DeviceState *dev)
{
NextKBDState *nks = NEXTKBD(dev);
memset(&nks->queue, 0, sizeof(KBDQueue));
nks->shift = 0;
}
static void nextkbd_realize(DeviceState *dev, Error **errp)
{
NextKBDState *s = NEXTKBD(dev);
memory_region_init_io(&s->mr, OBJECT(dev), &kbd_ops, s, "next.kbd", 0x1000);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mr);
qemu_input_handler_register(dev, &nextkbd_handler);
}
static const VMStateDescription nextkbd_vmstate = {
.name = TYPE_NEXTKBD,
.unmigratable = 1, /* TODO: Implement this when m68k CPU is migratable */
};
static void nextkbd_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
dc->vmsd = &nextkbd_vmstate;
dc->realize = nextkbd_realize;
device_class_set_legacy_reset(dc, nextkbd_reset);
}
static const TypeInfo nextkbd_info = {
.name = TYPE_NEXTKBD,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NextKBDState),
.class_init = nextkbd_class_init,
};
static void nextkbd_register_types(void)
{
type_register_static(&nextkbd_info);
}
type_init(nextkbd_register_types)