You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/intc/riscv_aplic.c

1040 lines
34 KiB
C

/*
* RISC-V APLIC (Advanced Platform Level Interrupt Controller)
*
* Copyright (c) 2021 Western Digital Corporation or its affiliates.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "qemu/bswap.h"
#include "exec/address-spaces.h"
#include "hw/sysbus.h"
#include "hw/pci/msi.h"
#include "hw/boards.h"
#include "hw/qdev-properties.h"
#include "hw/intc/riscv_aplic.h"
#include "hw/irq.h"
#include "target/riscv/cpu.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm/kvm_riscv.h"
#include "migration/vmstate.h"
#define APLIC_MAX_IDC (1UL << 14)
#define APLIC_MAX_SOURCE 1024
#define APLIC_MIN_IPRIO_BITS 1
#define APLIC_MAX_IPRIO_BITS 8
#define APLIC_MAX_CHILDREN 1024
#define APLIC_DOMAINCFG 0x0000
#define APLIC_DOMAINCFG_RDONLY 0x80000000
#define APLIC_DOMAINCFG_IE (1 << 8)
#define APLIC_DOMAINCFG_DM (1 << 2)
#define APLIC_DOMAINCFG_BE (1 << 0)
#define APLIC_SOURCECFG_BASE 0x0004
#define APLIC_SOURCECFG_D (1 << 10)
#define APLIC_SOURCECFG_CHILDIDX_MASK 0x000003ff
#define APLIC_SOURCECFG_SM_MASK 0x00000007
#define APLIC_SOURCECFG_SM_INACTIVE 0x0
#define APLIC_SOURCECFG_SM_DETACH 0x1
#define APLIC_SOURCECFG_SM_EDGE_RISE 0x4
#define APLIC_SOURCECFG_SM_EDGE_FALL 0x5
#define APLIC_SOURCECFG_SM_LEVEL_HIGH 0x6
#define APLIC_SOURCECFG_SM_LEVEL_LOW 0x7
#define APLIC_MMSICFGADDR 0x1bc0
#define APLIC_MMSICFGADDRH 0x1bc4
#define APLIC_SMSICFGADDR 0x1bc8
#define APLIC_SMSICFGADDRH 0x1bcc
#define APLIC_xMSICFGADDRH_L (1UL << 31)
#define APLIC_xMSICFGADDRH_HHXS_MASK 0x1f
#define APLIC_xMSICFGADDRH_HHXS_SHIFT 24
#define APLIC_xMSICFGADDRH_LHXS_MASK 0x7
#define APLIC_xMSICFGADDRH_LHXS_SHIFT 20
#define APLIC_xMSICFGADDRH_HHXW_MASK 0x7
#define APLIC_xMSICFGADDRH_HHXW_SHIFT 16
#define APLIC_xMSICFGADDRH_LHXW_MASK 0xf
#define APLIC_xMSICFGADDRH_LHXW_SHIFT 12
#define APLIC_xMSICFGADDRH_BAPPN_MASK 0xfff
#define APLIC_xMSICFGADDR_PPN_SHIFT 12
#define APLIC_xMSICFGADDR_PPN_HART(__lhxs) \
((1UL << (__lhxs)) - 1)
#define APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) \
((1UL << (__lhxw)) - 1)
#define APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs) \
((__lhxs))
#define APLIC_xMSICFGADDR_PPN_LHX(__lhxw, __lhxs) \
(APLIC_xMSICFGADDR_PPN_LHX_MASK(__lhxw) << \
APLIC_xMSICFGADDR_PPN_LHX_SHIFT(__lhxs))
#define APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) \
((1UL << (__hhxw)) - 1)
#define APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs) \
((__hhxs) + APLIC_xMSICFGADDR_PPN_SHIFT)
#define APLIC_xMSICFGADDR_PPN_HHX(__hhxw, __hhxs) \
(APLIC_xMSICFGADDR_PPN_HHX_MASK(__hhxw) << \
APLIC_xMSICFGADDR_PPN_HHX_SHIFT(__hhxs))
#define APLIC_xMSICFGADDRH_VALID_MASK \
(APLIC_xMSICFGADDRH_L | \
(APLIC_xMSICFGADDRH_HHXS_MASK << APLIC_xMSICFGADDRH_HHXS_SHIFT) | \
(APLIC_xMSICFGADDRH_LHXS_MASK << APLIC_xMSICFGADDRH_LHXS_SHIFT) | \
(APLIC_xMSICFGADDRH_HHXW_MASK << APLIC_xMSICFGADDRH_HHXW_SHIFT) | \
(APLIC_xMSICFGADDRH_LHXW_MASK << APLIC_xMSICFGADDRH_LHXW_SHIFT) | \
APLIC_xMSICFGADDRH_BAPPN_MASK)
#define APLIC_SETIP_BASE 0x1c00
#define APLIC_SETIPNUM 0x1cdc
#define APLIC_CLRIP_BASE 0x1d00
#define APLIC_CLRIPNUM 0x1ddc
#define APLIC_SETIE_BASE 0x1e00
#define APLIC_SETIENUM 0x1edc
#define APLIC_CLRIE_BASE 0x1f00
#define APLIC_CLRIENUM 0x1fdc
#define APLIC_SETIPNUM_LE 0x2000
#define APLIC_SETIPNUM_BE 0x2004
#define APLIC_ISTATE_PENDING (1U << 0)
#define APLIC_ISTATE_ENABLED (1U << 1)
#define APLIC_ISTATE_ENPEND (APLIC_ISTATE_ENABLED | \
APLIC_ISTATE_PENDING)
#define APLIC_ISTATE_INPUT (1U << 8)
#define APLIC_GENMSI 0x3000
#define APLIC_TARGET_BASE 0x3004
#define APLIC_TARGET_HART_IDX_SHIFT 18
#define APLIC_TARGET_HART_IDX_MASK 0x3fff
#define APLIC_TARGET_GUEST_IDX_SHIFT 12
#define APLIC_TARGET_GUEST_IDX_MASK 0x3f
#define APLIC_TARGET_IPRIO_MASK 0xff
#define APLIC_TARGET_EIID_MASK 0x7ff
#define APLIC_IDC_BASE 0x4000
#define APLIC_IDC_SIZE 32
#define APLIC_IDC_IDELIVERY 0x00
#define APLIC_IDC_IFORCE 0x04
#define APLIC_IDC_ITHRESHOLD 0x08
#define APLIC_IDC_TOPI 0x18
#define APLIC_IDC_TOPI_ID_SHIFT 16
#define APLIC_IDC_TOPI_ID_MASK 0x3ff
#define APLIC_IDC_TOPI_PRIO_MASK 0xff
#define APLIC_IDC_CLAIMI 0x1c
/*
* KVM AIA only supports APLIC MSI, fallback to QEMU emulation if we want to use
* APLIC Wired.
*/
static bool is_kvm_aia(bool msimode)
{
return kvm_irqchip_in_kernel() && msimode;
}
static bool riscv_aplic_irq_rectified_val(RISCVAPLICState *aplic,
uint32_t irq)
{
uint32_t sourcecfg, sm, raw_input, irq_inverted;
if (!irq || aplic->num_irqs <= irq) {
return false;
}
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
return false;
}
sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
return false;
}
raw_input = (aplic->state[irq] & APLIC_ISTATE_INPUT) ? 1 : 0;
irq_inverted = (sm == APLIC_SOURCECFG_SM_LEVEL_LOW ||
sm == APLIC_SOURCECFG_SM_EDGE_FALL) ? 1 : 0;
return !!(raw_input ^ irq_inverted);
}
static uint32_t riscv_aplic_read_input_word(RISCVAPLICState *aplic,
uint32_t word)
{
uint32_t i, irq, rectified_val, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
rectified_val = riscv_aplic_irq_rectified_val(aplic, irq);
ret |= rectified_val << i;
}
return ret;
}
static uint32_t riscv_aplic_read_pending_word(RISCVAPLICState *aplic,
uint32_t word)
{
uint32_t i, irq, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
ret |= ((aplic->state[irq] & APLIC_ISTATE_PENDING) ? 1 : 0) << i;
}
return ret;
}
static void riscv_aplic_set_pending_raw(RISCVAPLICState *aplic,
uint32_t irq, bool pending)
{
if (pending) {
aplic->state[irq] |= APLIC_ISTATE_PENDING;
} else {
aplic->state[irq] &= ~APLIC_ISTATE_PENDING;
}
}
static void riscv_aplic_set_pending(RISCVAPLICState *aplic,
uint32_t irq, bool pending)
{
uint32_t sourcecfg, sm;
if ((irq <= 0) || (aplic->num_irqs <= irq)) {
return;
}
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
return;
}
sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
return;
}
if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) ||
(sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
if (!aplic->msimode || (aplic->msimode && !pending)) {
return;
}
if ((aplic->state[irq] & APLIC_ISTATE_INPUT) &&
(sm == APLIC_SOURCECFG_SM_LEVEL_LOW)) {
return;
}
if (!(aplic->state[irq] & APLIC_ISTATE_INPUT) &&
(sm == APLIC_SOURCECFG_SM_LEVEL_HIGH)) {
return;
}
}
riscv_aplic_set_pending_raw(aplic, irq, pending);
}
static void riscv_aplic_set_pending_word(RISCVAPLICState *aplic,
uint32_t word, uint32_t value,
bool pending)
{
uint32_t i, irq;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
if (value & (1U << i)) {
riscv_aplic_set_pending(aplic, irq, pending);
}
}
}
static uint32_t riscv_aplic_read_enabled_word(RISCVAPLICState *aplic,
int word)
{
uint32_t i, irq, ret = 0;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
ret |= ((aplic->state[irq] & APLIC_ISTATE_ENABLED) ? 1 : 0) << i;
}
return ret;
}
static void riscv_aplic_set_enabled_raw(RISCVAPLICState *aplic,
uint32_t irq, bool enabled)
{
if (enabled) {
aplic->state[irq] |= APLIC_ISTATE_ENABLED;
} else {
aplic->state[irq] &= ~APLIC_ISTATE_ENABLED;
}
}
static void riscv_aplic_set_enabled(RISCVAPLICState *aplic,
uint32_t irq, bool enabled)
{
uint32_t sourcecfg, sm;
if ((irq <= 0) || (aplic->num_irqs <= irq)) {
return;
}
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
return;
}
sm = sourcecfg & APLIC_SOURCECFG_SM_MASK;
if (sm == APLIC_SOURCECFG_SM_INACTIVE) {
return;
}
riscv_aplic_set_enabled_raw(aplic, irq, enabled);
}
static void riscv_aplic_set_enabled_word(RISCVAPLICState *aplic,
uint32_t word, uint32_t value,
bool enabled)
{
uint32_t i, irq;
for (i = 0; i < 32; i++) {
irq = word * 32 + i;
if (!irq || aplic->num_irqs <= irq) {
continue;
}
if (value & (1U << i)) {
riscv_aplic_set_enabled(aplic, irq, enabled);
}
}
}
static void riscv_aplic_msi_send(RISCVAPLICState *aplic,
uint32_t hart_idx, uint32_t guest_idx,
uint32_t eiid)
{
uint64_t addr;
MemTxResult result;
RISCVAPLICState *aplic_m;
uint32_t lhxs, lhxw, hhxs, hhxw, group_idx, msicfgaddr, msicfgaddrH;
aplic_m = aplic;
while (aplic_m && !aplic_m->mmode) {
aplic_m = aplic_m->parent;
}
if (!aplic_m) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: m-level APLIC not found\n",
__func__);
return;
}
if (aplic->mmode) {
msicfgaddr = aplic_m->mmsicfgaddr;
msicfgaddrH = aplic_m->mmsicfgaddrH;
} else {
msicfgaddr = aplic_m->smsicfgaddr;
msicfgaddrH = aplic_m->smsicfgaddrH;
}
lhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXS_SHIFT) &
APLIC_xMSICFGADDRH_LHXS_MASK;
lhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_LHXW_SHIFT) &
APLIC_xMSICFGADDRH_LHXW_MASK;
hhxs = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXS_SHIFT) &
APLIC_xMSICFGADDRH_HHXS_MASK;
hhxw = (msicfgaddrH >> APLIC_xMSICFGADDRH_HHXW_SHIFT) &
APLIC_xMSICFGADDRH_HHXW_MASK;
group_idx = hart_idx >> lhxw;
hart_idx &= APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw);
addr = msicfgaddr;
addr |= ((uint64_t)(msicfgaddrH & APLIC_xMSICFGADDRH_BAPPN_MASK)) << 32;
addr |= ((uint64_t)(group_idx & APLIC_xMSICFGADDR_PPN_HHX_MASK(hhxw))) <<
APLIC_xMSICFGADDR_PPN_HHX_SHIFT(hhxs);
addr |= ((uint64_t)(hart_idx & APLIC_xMSICFGADDR_PPN_LHX_MASK(lhxw))) <<
APLIC_xMSICFGADDR_PPN_LHX_SHIFT(lhxs);
addr |= (uint64_t)(guest_idx & APLIC_xMSICFGADDR_PPN_HART(lhxs));
addr <<= APLIC_xMSICFGADDR_PPN_SHIFT;
address_space_stl_le(&address_space_memory, addr,
eiid, MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: MSI write failed for "
"hart_index=%d guest_index=%d eiid=%d\n",
__func__, hart_idx, guest_idx, eiid);
}
}
static void riscv_aplic_msi_irq_update(RISCVAPLICState *aplic, uint32_t irq)
{
uint32_t hart_idx, guest_idx, eiid;
if (!aplic->msimode || (aplic->num_irqs <= irq) ||
!(aplic->domaincfg & APLIC_DOMAINCFG_IE)) {
return;
}
if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) != APLIC_ISTATE_ENPEND) {
return;
}
riscv_aplic_set_pending_raw(aplic, irq, false);
hart_idx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
hart_idx &= APLIC_TARGET_HART_IDX_MASK;
if (aplic->mmode) {
/* M-level APLIC ignores guest_index */
guest_idx = 0;
} else {
guest_idx = aplic->target[irq] >> APLIC_TARGET_GUEST_IDX_SHIFT;
guest_idx &= APLIC_TARGET_GUEST_IDX_MASK;
}
eiid = aplic->target[irq] & APLIC_TARGET_EIID_MASK;
riscv_aplic_msi_send(aplic, hart_idx, guest_idx, eiid);
}
static uint32_t riscv_aplic_idc_topi(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t best_irq, best_iprio;
uint32_t irq, iprio, ihartidx, ithres;
if (aplic->num_harts <= idc) {
return 0;
}
ithres = aplic->ithreshold[idc];
best_irq = best_iprio = UINT32_MAX;
for (irq = 1; irq < aplic->num_irqs; irq++) {
if ((aplic->state[irq] & APLIC_ISTATE_ENPEND) !=
APLIC_ISTATE_ENPEND) {
continue;
}
ihartidx = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
ihartidx &= APLIC_TARGET_HART_IDX_MASK;
if (ihartidx != idc) {
continue;
}
iprio = aplic->target[irq] & aplic->iprio_mask;
if (ithres && iprio >= ithres) {
continue;
}
if (iprio < best_iprio) {
best_irq = irq;
best_iprio = iprio;
}
}
if (best_irq < aplic->num_irqs && best_iprio <= aplic->iprio_mask) {
return (best_irq << APLIC_IDC_TOPI_ID_SHIFT) | best_iprio;
}
return 0;
}
static void riscv_aplic_idc_update(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t topi;
if (aplic->msimode || aplic->num_harts <= idc) {
return;
}
topi = riscv_aplic_idc_topi(aplic, idc);
if ((aplic->domaincfg & APLIC_DOMAINCFG_IE) &&
aplic->idelivery[idc] &&
(aplic->iforce[idc] || topi)) {
qemu_irq_raise(aplic->external_irqs[idc]);
} else {
qemu_irq_lower(aplic->external_irqs[idc]);
}
}
static uint32_t riscv_aplic_idc_claimi(RISCVAPLICState *aplic, uint32_t idc)
{
uint32_t irq, state, sm, topi = riscv_aplic_idc_topi(aplic, idc);
if (!topi) {
aplic->iforce[idc] = 0;
riscv_aplic_idc_update(aplic, idc);
return 0;
}
irq = (topi >> APLIC_IDC_TOPI_ID_SHIFT) & APLIC_IDC_TOPI_ID_MASK;
sm = aplic->sourcecfg[irq] & APLIC_SOURCECFG_SM_MASK;
state = aplic->state[irq];
riscv_aplic_set_pending_raw(aplic, irq, false);
if ((sm == APLIC_SOURCECFG_SM_LEVEL_HIGH) &&
(state & APLIC_ISTATE_INPUT)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
} else if ((sm == APLIC_SOURCECFG_SM_LEVEL_LOW) &&
!(state & APLIC_ISTATE_INPUT)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
}
riscv_aplic_idc_update(aplic, idc);
return topi;
}
static void riscv_aplic_request(void *opaque, int irq, int level)
{
bool update = false;
RISCVAPLICState *aplic = opaque;
uint32_t sourcecfg, childidx, state, idc;
assert((0 < irq) && (irq < aplic->num_irqs));
sourcecfg = aplic->sourcecfg[irq];
if (sourcecfg & APLIC_SOURCECFG_D) {
childidx = sourcecfg & APLIC_SOURCECFG_CHILDIDX_MASK;
if (childidx < aplic->num_children) {
riscv_aplic_request(aplic->children[childidx], irq, level);
}
return;
}
state = aplic->state[irq];
switch (sourcecfg & APLIC_SOURCECFG_SM_MASK) {
case APLIC_SOURCECFG_SM_EDGE_RISE:
if ((level > 0) && !(state & APLIC_ISTATE_INPUT) &&
!(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_EDGE_FALL:
if ((level <= 0) && (state & APLIC_ISTATE_INPUT) &&
!(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_LEVEL_HIGH:
if ((level > 0) && !(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
case APLIC_SOURCECFG_SM_LEVEL_LOW:
if ((level <= 0) && !(state & APLIC_ISTATE_PENDING)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
update = true;
}
break;
default:
break;
}
if (level <= 0) {
aplic->state[irq] &= ~APLIC_ISTATE_INPUT;
} else {
aplic->state[irq] |= APLIC_ISTATE_INPUT;
}
if (update) {
if (aplic->msimode) {
riscv_aplic_msi_irq_update(aplic, irq);
} else {
idc = aplic->target[irq] >> APLIC_TARGET_HART_IDX_SHIFT;
idc &= APLIC_TARGET_HART_IDX_MASK;
riscv_aplic_idc_update(aplic, idc);
}
}
}
static uint64_t riscv_aplic_read(void *opaque, hwaddr addr, unsigned size)
{
uint32_t irq, word, idc;
RISCVAPLICState *aplic = opaque;
/* Reads must be 4 byte words */
if ((addr & 0x3) != 0) {
goto err;
}
if (addr == APLIC_DOMAINCFG) {
return APLIC_DOMAINCFG_RDONLY | aplic->domaincfg |
(aplic->msimode ? APLIC_DOMAINCFG_DM : 0);
} else if ((APLIC_SOURCECFG_BASE <= addr) &&
(addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
return aplic->sourcecfg[irq];
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDR)) {
return aplic->mmsicfgaddr;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDRH)) {
return aplic->mmsicfgaddrH;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDR)) {
/*
* Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
* (a) the interrupt domain is at machine level
* (b) the domain's harts implement supervisor mode
* (c) the domain has one or more child supervisor-level domains
* that support MSI delivery mode (domaincfg.DM is not read-
* only zero in at least one of the supervisor-level child
* domains).
*/
return (aplic->num_children) ? aplic->smsicfgaddr : 0;
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDRH)) {
return (aplic->num_children) ? aplic->smsicfgaddrH : 0;
} else if ((APLIC_SETIP_BASE <= addr) &&
(addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIP_BASE) >> 2;
return riscv_aplic_read_pending_word(aplic, word);
} else if (addr == APLIC_SETIPNUM) {
return 0;
} else if ((APLIC_CLRIP_BASE <= addr) &&
(addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIP_BASE) >> 2;
return riscv_aplic_read_input_word(aplic, word);
} else if (addr == APLIC_CLRIPNUM) {
return 0;
} else if ((APLIC_SETIE_BASE <= addr) &&
(addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIE_BASE) >> 2;
return riscv_aplic_read_enabled_word(aplic, word);
} else if (addr == APLIC_SETIENUM) {
return 0;
} else if ((APLIC_CLRIE_BASE <= addr) &&
(addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
return 0;
} else if (addr == APLIC_CLRIENUM) {
return 0;
} else if (addr == APLIC_SETIPNUM_LE) {
return 0;
} else if (addr == APLIC_SETIPNUM_BE) {
return 0;
} else if (addr == APLIC_GENMSI) {
return (aplic->msimode) ? aplic->genmsi : 0;
} else if ((APLIC_TARGET_BASE <= addr) &&
(addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
return aplic->target[irq];
} else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
(addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
case APLIC_IDC_IDELIVERY:
return aplic->idelivery[idc];
case APLIC_IDC_IFORCE:
return aplic->iforce[idc];
case APLIC_IDC_ITHRESHOLD:
return aplic->ithreshold[idc];
case APLIC_IDC_TOPI:
return riscv_aplic_idc_topi(aplic, idc);
case APLIC_IDC_CLAIMI:
return riscv_aplic_idc_claimi(aplic, idc);
default:
goto err;
};
}
err:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register read 0x%" HWADDR_PRIx "\n",
__func__, addr);
return 0;
}
static void riscv_aplic_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
RISCVAPLICState *aplic = opaque;
uint32_t irq, word, idc = UINT32_MAX;
/* Writes must be 4 byte words */
if ((addr & 0x3) != 0) {
goto err;
}
if (addr == APLIC_DOMAINCFG) {
/* Only IE bit writable at the moment */
value &= APLIC_DOMAINCFG_IE;
aplic->domaincfg = value;
} else if ((APLIC_SOURCECFG_BASE <= addr) &&
(addr < (APLIC_SOURCECFG_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_SOURCECFG_BASE) >> 2) + 1;
if (!aplic->num_children && (value & APLIC_SOURCECFG_D)) {
value = 0;
}
if (value & APLIC_SOURCECFG_D) {
value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_CHILDIDX_MASK);
} else {
value &= (APLIC_SOURCECFG_D | APLIC_SOURCECFG_SM_MASK);
}
aplic->sourcecfg[irq] = value;
if ((aplic->sourcecfg[irq] & APLIC_SOURCECFG_D) ||
(aplic->sourcecfg[irq] == 0)) {
riscv_aplic_set_pending_raw(aplic, irq, false);
riscv_aplic_set_enabled_raw(aplic, irq, false);
} else {
if (riscv_aplic_irq_rectified_val(aplic, irq)) {
riscv_aplic_set_pending_raw(aplic, irq, true);
}
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDR)) {
if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->mmsicfgaddr = value;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_MMSICFGADDRH)) {
if (!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->mmsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDR)) {
/*
* Registers SMSICFGADDR and SMSICFGADDRH are implemented only if:
* (a) the interrupt domain is at machine level
* (b) the domain's harts implement supervisor mode
* (c) the domain has one or more child supervisor-level domains
* that support MSI delivery mode (domaincfg.DM is not read-
* only zero in at least one of the supervisor-level child
* domains).
*/
if (aplic->num_children &&
!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->smsicfgaddr = value;
}
} else if (aplic->mmode && aplic->msimode &&
(addr == APLIC_SMSICFGADDRH)) {
if (aplic->num_children &&
!(aplic->mmsicfgaddrH & APLIC_xMSICFGADDRH_L)) {
aplic->smsicfgaddrH = value & APLIC_xMSICFGADDRH_VALID_MASK;
}
} else if ((APLIC_SETIP_BASE <= addr) &&
(addr < (APLIC_SETIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIP_BASE) >> 2;
riscv_aplic_set_pending_word(aplic, word, value, true);
} else if (addr == APLIC_SETIPNUM) {
riscv_aplic_set_pending(aplic, value, true);
} else if ((APLIC_CLRIP_BASE <= addr) &&
(addr < (APLIC_CLRIP_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIP_BASE) >> 2;
riscv_aplic_set_pending_word(aplic, word, value, false);
} else if (addr == APLIC_CLRIPNUM) {
riscv_aplic_set_pending(aplic, value, false);
} else if ((APLIC_SETIE_BASE <= addr) &&
(addr < (APLIC_SETIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_SETIE_BASE) >> 2;
riscv_aplic_set_enabled_word(aplic, word, value, true);
} else if (addr == APLIC_SETIENUM) {
riscv_aplic_set_enabled(aplic, value, true);
} else if ((APLIC_CLRIE_BASE <= addr) &&
(addr < (APLIC_CLRIE_BASE + aplic->bitfield_words * 4))) {
word = (addr - APLIC_CLRIE_BASE) >> 2;
riscv_aplic_set_enabled_word(aplic, word, value, false);
} else if (addr == APLIC_CLRIENUM) {
riscv_aplic_set_enabled(aplic, value, false);
} else if (addr == APLIC_SETIPNUM_LE) {
riscv_aplic_set_pending(aplic, value, true);
} else if (addr == APLIC_SETIPNUM_BE) {
riscv_aplic_set_pending(aplic, bswap32(value), true);
} else if (addr == APLIC_GENMSI) {
if (aplic->msimode) {
aplic->genmsi = value & ~(APLIC_TARGET_GUEST_IDX_MASK <<
APLIC_TARGET_GUEST_IDX_SHIFT);
riscv_aplic_msi_send(aplic,
value >> APLIC_TARGET_HART_IDX_SHIFT,
0,
value & APLIC_TARGET_EIID_MASK);
}
} else if ((APLIC_TARGET_BASE <= addr) &&
(addr < (APLIC_TARGET_BASE + (aplic->num_irqs - 1) * 4))) {
irq = ((addr - APLIC_TARGET_BASE) >> 2) + 1;
if (aplic->msimode) {
aplic->target[irq] = value;
} else {
aplic->target[irq] = (value & ~APLIC_TARGET_IPRIO_MASK) |
((value & aplic->iprio_mask) ?
(value & aplic->iprio_mask) : 1);
}
} else if (!aplic->msimode && (APLIC_IDC_BASE <= addr) &&
(addr < (APLIC_IDC_BASE + aplic->num_harts * APLIC_IDC_SIZE))) {
idc = (addr - APLIC_IDC_BASE) / APLIC_IDC_SIZE;
switch (addr - (APLIC_IDC_BASE + idc * APLIC_IDC_SIZE)) {
case APLIC_IDC_IDELIVERY:
aplic->idelivery[idc] = value & 0x1;
break;
case APLIC_IDC_IFORCE:
aplic->iforce[idc] = value & 0x1;
break;
case APLIC_IDC_ITHRESHOLD:
aplic->ithreshold[idc] = value & aplic->iprio_mask;
break;
default:
goto err;
};
} else {
goto err;
}
if (aplic->msimode) {
for (irq = 1; irq < aplic->num_irqs; irq++) {
riscv_aplic_msi_irq_update(aplic, irq);
}
} else {
if (idc == UINT32_MAX) {
for (idc = 0; idc < aplic->num_harts; idc++) {
riscv_aplic_idc_update(aplic, idc);
}
} else {
riscv_aplic_idc_update(aplic, idc);
}
}
return;
err:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register write 0x%" HWADDR_PRIx "\n",
__func__, addr);
}
static const MemoryRegionOps riscv_aplic_ops = {
.read = riscv_aplic_read,
.write = riscv_aplic_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static void riscv_aplic_realize(DeviceState *dev, Error **errp)
{
uint32_t i;
RISCVAPLICState *aplic = RISCV_APLIC(dev);
if (!is_kvm_aia(aplic->msimode)) {
aplic->bitfield_words = (aplic->num_irqs + 31) >> 5;
aplic->sourcecfg = g_new0(uint32_t, aplic->num_irqs);
aplic->state = g_new0(uint32_t, aplic->num_irqs);
aplic->target = g_new0(uint32_t, aplic->num_irqs);
if (!aplic->msimode) {
for (i = 0; i < aplic->num_irqs; i++) {
aplic->target[i] = 1;
}
}
aplic->idelivery = g_new0(uint32_t, aplic->num_harts);
aplic->iforce = g_new0(uint32_t, aplic->num_harts);
aplic->ithreshold = g_new0(uint32_t, aplic->num_harts);
memory_region_init_io(&aplic->mmio, OBJECT(dev), &riscv_aplic_ops,
aplic, TYPE_RISCV_APLIC, aplic->aperture_size);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &aplic->mmio);
}
/*
* Only root APLICs have hardware IRQ lines. All non-root APLICs
* have IRQ lines delegated by their parent APLIC.
*/
if (!aplic->parent) {
if (kvm_enabled() && is_kvm_aia(aplic->msimode)) {
qdev_init_gpio_in(dev, riscv_kvm_aplic_request, aplic->num_irqs);
} else {
qdev_init_gpio_in(dev, riscv_aplic_request, aplic->num_irqs);
}
}
/* Create output IRQ lines for non-MSI mode */
if (!aplic->msimode) {
aplic->external_irqs = g_malloc(sizeof(qemu_irq) * aplic->num_harts);
qdev_init_gpio_out(dev, aplic->external_irqs, aplic->num_harts);
/* Claim the CPU interrupt to be triggered by this APLIC */
for (i = 0; i < aplic->num_harts; i++) {
RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(aplic->hartid_base + i));
if (riscv_cpu_claim_interrupts(cpu,
(aplic->mmode) ? MIP_MEIP : MIP_SEIP) < 0) {
error_report("%s already claimed",
(aplic->mmode) ? "MEIP" : "SEIP");
exit(1);
}
}
}
msi_nonbroken = true;
}
static Property riscv_aplic_properties[] = {
DEFINE_PROP_UINT32("aperture-size", RISCVAPLICState, aperture_size, 0),
DEFINE_PROP_UINT32("hartid-base", RISCVAPLICState, hartid_base, 0),
DEFINE_PROP_UINT32("num-harts", RISCVAPLICState, num_harts, 0),
DEFINE_PROP_UINT32("iprio-mask", RISCVAPLICState, iprio_mask, 0),
DEFINE_PROP_UINT32("num-irqs", RISCVAPLICState, num_irqs, 0),
DEFINE_PROP_BOOL("msimode", RISCVAPLICState, msimode, 0),
DEFINE_PROP_BOOL("mmode", RISCVAPLICState, mmode, 0),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_riscv_aplic = {
.name = "riscv_aplic",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(domaincfg, RISCVAPLICState),
VMSTATE_UINT32(mmsicfgaddr, RISCVAPLICState),
VMSTATE_UINT32(mmsicfgaddrH, RISCVAPLICState),
VMSTATE_UINT32(smsicfgaddr, RISCVAPLICState),
VMSTATE_UINT32(smsicfgaddrH, RISCVAPLICState),
VMSTATE_UINT32(genmsi, RISCVAPLICState),
VMSTATE_VARRAY_UINT32(sourcecfg, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(state, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(target, RISCVAPLICState,
num_irqs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(idelivery, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(iforce, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(ithreshold, RISCVAPLICState,
num_harts, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
}
};
static void riscv_aplic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
device_class_set_props(dc, riscv_aplic_properties);
dc->realize = riscv_aplic_realize;
dc->vmsd = &vmstate_riscv_aplic;
}
static const TypeInfo riscv_aplic_info = {
.name = TYPE_RISCV_APLIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(RISCVAPLICState),
.class_init = riscv_aplic_class_init,
};
static void riscv_aplic_register_types(void)
{
type_register_static(&riscv_aplic_info);
}
type_init(riscv_aplic_register_types)
/*
* Add a APLIC device to another APLIC device as child for
* interrupt delegation.
*/
void riscv_aplic_add_child(DeviceState *parent, DeviceState *child)
{
RISCVAPLICState *caplic, *paplic;
assert(parent && child);
caplic = RISCV_APLIC(child);
paplic = RISCV_APLIC(parent);
assert(paplic->num_irqs == caplic->num_irqs);
assert(paplic->num_children <= QEMU_APLIC_MAX_CHILDREN);
caplic->parent = paplic;
paplic->children[paplic->num_children] = caplic;
paplic->num_children++;
}
/*
* Create APLIC device.
*/
DeviceState *riscv_aplic_create(hwaddr addr, hwaddr size,
uint32_t hartid_base, uint32_t num_harts, uint32_t num_sources,
uint32_t iprio_bits, bool msimode, bool mmode, DeviceState *parent)
{
DeviceState *dev = qdev_new(TYPE_RISCV_APLIC);
uint32_t i;
assert(num_harts < APLIC_MAX_IDC);
assert((APLIC_IDC_BASE + (num_harts * APLIC_IDC_SIZE)) <= size);
assert(num_sources < APLIC_MAX_SOURCE);
assert(APLIC_MIN_IPRIO_BITS <= iprio_bits);
assert(iprio_bits <= APLIC_MAX_IPRIO_BITS);
qdev_prop_set_uint32(dev, "aperture-size", size);
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
qdev_prop_set_uint32(dev, "num-harts", num_harts);
qdev_prop_set_uint32(dev, "iprio-mask", ((1U << iprio_bits) - 1));
qdev_prop_set_uint32(dev, "num-irqs", num_sources + 1);
qdev_prop_set_bit(dev, "msimode", msimode);
qdev_prop_set_bit(dev, "mmode", mmode);
if (parent) {
riscv_aplic_add_child(parent, dev);
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
if (!is_kvm_aia(msimode)) {
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
}
if (!msimode) {
for (i = 0; i < num_harts; i++) {
CPUState *cpu = cpu_by_arch_id(hartid_base + i);
qdev_connect_gpio_out_named(dev, NULL, i,
qdev_get_gpio_in(DEVICE(cpu),
(mmode) ? IRQ_M_EXT : IRQ_S_EXT));
}
}
return dev;
}