mirror of https://gitlab.com/qemu-project/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3613 lines
131 KiB
C
3613 lines
131 KiB
C
/*
|
|
* ARM mach-virt emulation
|
|
*
|
|
* Copyright (c) 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Emulate a virtual board which works by passing Linux all the information
|
|
* it needs about what devices are present via the device tree.
|
|
* There are some restrictions about what we can do here:
|
|
* + we can only present devices whose Linux drivers will work based
|
|
* purely on the device tree with no platform data at all
|
|
* + we want to present a very stripped-down minimalist platform,
|
|
* both because this reduces the security attack surface from the guest
|
|
* and also because it reduces our exposure to being broken when
|
|
* the kernel updates its device tree bindings and requires further
|
|
* information in a device binding that we aren't providing.
|
|
* This is essentially the same approach kvmtool uses.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/datadir.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/option.h"
|
|
#include "monitor/qdev.h"
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/arm/virt.h"
|
|
#include "hw/block/flash.h"
|
|
#include "hw/vfio/vfio-calxeda-xgmac.h"
|
|
#include "hw/vfio/vfio-amd-xgbe.h"
|
|
#include "hw/display/ramfb.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/numa.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/tpm.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/hvf.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "hw/loader.h"
|
|
#include "qapi/error.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/module.h"
|
|
#include "hw/pci-host/gpex.h"
|
|
#include "hw/virtio/virtio-pci.h"
|
|
#include "hw/core/sysbus-fdt.h"
|
|
#include "hw/platform-bus.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "hw/arm/fdt.h"
|
|
#include "hw/intc/arm_gic.h"
|
|
#include "hw/intc/arm_gicv3_common.h"
|
|
#include "hw/intc/arm_gicv3_its_common.h"
|
|
#include "hw/irq.h"
|
|
#include "kvm_arm.h"
|
|
#include "hvf_arm.h"
|
|
#include "hw/firmware/smbios.h"
|
|
#include "qapi/visitor.h"
|
|
#include "qapi/qapi-visit-common.h"
|
|
#include "qapi/qmp/qlist.h"
|
|
#include "standard-headers/linux/input.h"
|
|
#include "hw/arm/smmuv3.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "target/arm/cpu-qom.h"
|
|
#include "target/arm/internals.h"
|
|
#include "target/arm/multiprocessing.h"
|
|
#include "target/arm/gtimer.h"
|
|
#include "hw/mem/pc-dimm.h"
|
|
#include "hw/mem/nvdimm.h"
|
|
#include "hw/acpi/generic_event_device.h"
|
|
#include "hw/virtio/virtio-md-pci.h"
|
|
#include "hw/virtio/virtio-iommu.h"
|
|
#include "hw/char/pl011.h"
|
|
#include "qemu/guest-random.h"
|
|
|
|
static GlobalProperty arm_virt_compat[] = {
|
|
{ TYPE_VIRTIO_IOMMU_PCI, "aw-bits", "48" },
|
|
};
|
|
static const size_t arm_virt_compat_len = G_N_ELEMENTS(arm_virt_compat);
|
|
|
|
/*
|
|
* This cannot be called from the virt_machine_class_init() because
|
|
* TYPE_VIRT_MACHINE is abstract and mc->compat_props g_ptr_array_new()
|
|
* only is called on virt non abstract class init.
|
|
*/
|
|
static void arm_virt_compat_set(MachineClass *mc)
|
|
{
|
|
compat_props_add(mc->compat_props, arm_virt_compat,
|
|
arm_virt_compat_len);
|
|
}
|
|
|
|
#define DEFINE_VIRT_MACHINE_IMPL(latest, ...) \
|
|
static void MACHINE_VER_SYM(class_init, virt, __VA_ARGS__)( \
|
|
ObjectClass *oc, \
|
|
void *data) \
|
|
{ \
|
|
MachineClass *mc = MACHINE_CLASS(oc); \
|
|
arm_virt_compat_set(mc); \
|
|
MACHINE_VER_SYM(options, virt, __VA_ARGS__)(mc); \
|
|
mc->desc = "QEMU " MACHINE_VER_STR(__VA_ARGS__) " ARM Virtual Machine"; \
|
|
MACHINE_VER_DEPRECATION(__VA_ARGS__); \
|
|
if (latest) { \
|
|
mc->alias = "virt"; \
|
|
} \
|
|
} \
|
|
static const TypeInfo MACHINE_VER_SYM(info, virt, __VA_ARGS__) = \
|
|
{ \
|
|
.name = MACHINE_VER_TYPE_NAME("virt", __VA_ARGS__), \
|
|
.parent = TYPE_VIRT_MACHINE, \
|
|
.class_init = MACHINE_VER_SYM(class_init, virt, __VA_ARGS__), \
|
|
}; \
|
|
static void MACHINE_VER_SYM(register, virt, __VA_ARGS__)(void) \
|
|
{ \
|
|
MACHINE_VER_DELETION(__VA_ARGS__); \
|
|
type_register_static(&MACHINE_VER_SYM(info, virt, __VA_ARGS__)); \
|
|
} \
|
|
type_init(MACHINE_VER_SYM(register, virt, __VA_ARGS__));
|
|
|
|
#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
|
|
DEFINE_VIRT_MACHINE_IMPL(true, major, minor)
|
|
#define DEFINE_VIRT_MACHINE(major, minor) \
|
|
DEFINE_VIRT_MACHINE_IMPL(false, major, minor)
|
|
|
|
|
|
/* Number of external interrupt lines to configure the GIC with */
|
|
#define NUM_IRQS 256
|
|
|
|
#define PLATFORM_BUS_NUM_IRQS 64
|
|
|
|
/* Legacy RAM limit in GB (< version 4.0) */
|
|
#define LEGACY_RAMLIMIT_GB 255
|
|
#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
|
|
|
|
/* Addresses and sizes of our components.
|
|
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
|
|
* 128MB..256MB is used for miscellaneous device I/O.
|
|
* 256MB..1GB is reserved for possible future PCI support (ie where the
|
|
* PCI memory window will go if we add a PCI host controller).
|
|
* 1GB and up is RAM (which may happily spill over into the
|
|
* high memory region beyond 4GB).
|
|
* This represents a compromise between how much RAM can be given to
|
|
* a 32 bit VM and leaving space for expansion and in particular for PCI.
|
|
* Note that devices should generally be placed at multiples of 0x10000,
|
|
* to accommodate guests using 64K pages.
|
|
*/
|
|
static const MemMapEntry base_memmap[] = {
|
|
/* Space up to 0x8000000 is reserved for a boot ROM */
|
|
[VIRT_FLASH] = { 0, 0x08000000 },
|
|
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
|
|
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
|
|
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
|
|
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
|
|
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
|
|
[VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
|
|
[VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
|
|
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
|
|
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
|
|
/* This redistributor space allows up to 2*64kB*123 CPUs */
|
|
[VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
|
|
[VIRT_UART0] = { 0x09000000, 0x00001000 },
|
|
[VIRT_RTC] = { 0x09010000, 0x00001000 },
|
|
[VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
|
|
[VIRT_GPIO] = { 0x09030000, 0x00001000 },
|
|
[VIRT_UART1] = { 0x09040000, 0x00001000 },
|
|
[VIRT_SMMU] = { 0x09050000, 0x00020000 },
|
|
[VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
|
|
[VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
|
|
[VIRT_NVDIMM_ACPI] = { 0x09090000, NVDIMM_ACPI_IO_LEN},
|
|
[VIRT_PVTIME] = { 0x090a0000, 0x00010000 },
|
|
[VIRT_SECURE_GPIO] = { 0x090b0000, 0x00001000 },
|
|
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
|
|
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
|
|
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
|
|
[VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
|
|
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
|
|
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
|
|
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
|
|
/* Actual RAM size depends on initial RAM and device memory settings */
|
|
[VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
|
|
};
|
|
|
|
/*
|
|
* Highmem IO Regions: This memory map is floating, located after the RAM.
|
|
* Each MemMapEntry base (GPA) will be dynamically computed, depending on the
|
|
* top of the RAM, so that its base get the same alignment as the size,
|
|
* ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
|
|
* less than 256GiB of RAM, the floating area starts at the 256GiB mark.
|
|
* Note the extended_memmap is sized so that it eventually also includes the
|
|
* base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
|
|
* index of base_memmap).
|
|
*
|
|
* The memory map for these Highmem IO Regions can be in legacy or compact
|
|
* layout, depending on 'compact-highmem' property. With legacy layout, the
|
|
* PA space for one specific region is always reserved, even if the region
|
|
* has been disabled or doesn't fit into the PA space. However, the PA space
|
|
* for the region won't be reserved in these circumstances with compact layout.
|
|
*/
|
|
static MemMapEntry extended_memmap[] = {
|
|
/* Additional 64 MB redist region (can contain up to 512 redistributors) */
|
|
[VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
|
|
[VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
|
|
/* Second PCIe window */
|
|
[VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
|
|
};
|
|
|
|
static const int a15irqmap[] = {
|
|
[VIRT_UART0] = 1,
|
|
[VIRT_RTC] = 2,
|
|
[VIRT_PCIE] = 3, /* ... to 6 */
|
|
[VIRT_GPIO] = 7,
|
|
[VIRT_UART1] = 8,
|
|
[VIRT_ACPI_GED] = 9,
|
|
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
|
|
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
|
|
[VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
|
|
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
|
|
};
|
|
|
|
static void create_randomness(MachineState *ms, const char *node)
|
|
{
|
|
struct {
|
|
uint64_t kaslr;
|
|
uint8_t rng[32];
|
|
} seed;
|
|
|
|
if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
|
|
return;
|
|
}
|
|
qemu_fdt_setprop_u64(ms->fdt, node, "kaslr-seed", seed.kaslr);
|
|
qemu_fdt_setprop(ms->fdt, node, "rng-seed", seed.rng, sizeof(seed.rng));
|
|
}
|
|
|
|
/*
|
|
* The CPU object always exposes the NS EL2 virt timer IRQ line,
|
|
* but we don't want to advertise it to the guest in the dtb or ACPI
|
|
* table unless it's really going to do something.
|
|
*/
|
|
static bool ns_el2_virt_timer_present(void)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
return arm_feature(env, ARM_FEATURE_AARCH64) &&
|
|
arm_feature(env, ARM_FEATURE_EL2) && cpu_isar_feature(aa64_vh, cpu);
|
|
}
|
|
|
|
static void create_fdt(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
int nb_numa_nodes = ms->numa_state->num_nodes;
|
|
void *fdt = create_device_tree(&vms->fdt_size);
|
|
|
|
if (!fdt) {
|
|
error_report("create_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
ms->fdt = fdt;
|
|
|
|
/* Header */
|
|
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
|
|
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
|
|
qemu_fdt_setprop_string(fdt, "/", "model", "linux,dummy-virt");
|
|
|
|
/*
|
|
* For QEMU, all DMA is coherent. Advertising this in the root node
|
|
* has two benefits:
|
|
*
|
|
* - It avoids potential bugs where we forget to mark a DMA
|
|
* capable device as being dma-coherent
|
|
* - It avoids spurious warnings from the Linux kernel about
|
|
* devices which can't do DMA at all
|
|
*/
|
|
qemu_fdt_setprop(fdt, "/", "dma-coherent", NULL, 0);
|
|
|
|
/* /chosen must exist for load_dtb to fill in necessary properties later */
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
if (vms->dtb_randomness) {
|
|
create_randomness(ms, "/chosen");
|
|
}
|
|
|
|
if (vms->secure) {
|
|
qemu_fdt_add_subnode(fdt, "/secure-chosen");
|
|
if (vms->dtb_randomness) {
|
|
create_randomness(ms, "/secure-chosen");
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/aliases");
|
|
|
|
/* Clock node, for the benefit of the UART. The kernel device tree
|
|
* binding documentation claims the PL011 node clock properties are
|
|
* optional but in practice if you omit them the kernel refuses to
|
|
* probe for the device.
|
|
*/
|
|
vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
|
|
qemu_fdt_add_subnode(fdt, "/apb-pclk");
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
|
|
"clk24mhz");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
|
|
|
|
if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
|
|
int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
|
|
uint32_t *matrix = g_malloc0(size);
|
|
int idx, i, j;
|
|
|
|
for (i = 0; i < nb_numa_nodes; i++) {
|
|
for (j = 0; j < nb_numa_nodes; j++) {
|
|
idx = (i * nb_numa_nodes + j) * 3;
|
|
matrix[idx + 0] = cpu_to_be32(i);
|
|
matrix[idx + 1] = cpu_to_be32(j);
|
|
matrix[idx + 2] =
|
|
cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(fdt, "/distance-map");
|
|
qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
|
|
"numa-distance-map-v1");
|
|
qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
|
|
matrix, size);
|
|
g_free(matrix);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_timer_nodes(const VirtMachineState *vms)
|
|
{
|
|
/* On real hardware these interrupts are level-triggered.
|
|
* On KVM they were edge-triggered before host kernel version 4.4,
|
|
* and level-triggered afterwards.
|
|
* On emulated QEMU they are level-triggered.
|
|
*
|
|
* Getting the DTB info about them wrong is awkward for some
|
|
* guest kernels:
|
|
* pre-4.8 ignore the DT and leave the interrupt configured
|
|
* with whatever the GIC reset value (or the bootloader) left it at
|
|
* 4.8 before rc6 honour the incorrect data by programming it back
|
|
* into the GIC, causing problems
|
|
* 4.8rc6 and later ignore the DT and always write "level triggered"
|
|
* into the GIC
|
|
*
|
|
* For backwards-compatibility, virt-2.8 and earlier will continue
|
|
* to say these are edge-triggered, but later machines will report
|
|
* the correct information.
|
|
*/
|
|
ARMCPU *armcpu;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (vmc->claim_edge_triggered_timers) {
|
|
irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
|
|
}
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << MACHINE(vms)->smp.cpus) - 1);
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/timer");
|
|
|
|
armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
|
|
qemu_fdt_setprop(ms->fdt, "/timer", "compatible",
|
|
compat, sizeof(compat));
|
|
} else {
|
|
qemu_fdt_setprop_string(ms->fdt, "/timer", "compatible",
|
|
"arm,armv7-timer");
|
|
}
|
|
qemu_fdt_setprop(ms->fdt, "/timer", "always-on", NULL, 0);
|
|
if (vms->ns_el2_virt_timer_irq) {
|
|
qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_VIRT_IRQ), irqflags);
|
|
} else {
|
|
qemu_fdt_setprop_cells(ms->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_S_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL1_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_VIRT_IRQ), irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_TIMER_NS_EL2_IRQ), irqflags);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_cpu_nodes(const VirtMachineState *vms)
|
|
{
|
|
int cpu;
|
|
int addr_cells = 1;
|
|
const MachineState *ms = MACHINE(vms);
|
|
const VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
int smp_cpus = ms->smp.cpus;
|
|
|
|
/*
|
|
* See Linux Documentation/devicetree/bindings/arm/cpus.yaml
|
|
* On ARM v8 64-bit systems value should be set to 2,
|
|
* that corresponds to the MPIDR_EL1 register size.
|
|
* If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
|
|
* in the system, #address-cells can be set to 1, since
|
|
* MPIDR_EL1[63:32] bits are not used for CPUs
|
|
* identification.
|
|
*
|
|
* Here we actually don't know whether our system is 32- or 64-bit one.
|
|
* The simplest way to go is to examine affinity IDs of all our CPUs. If
|
|
* at least one of them has Aff3 populated, we set #address-cells to 2.
|
|
*/
|
|
for (cpu = 0; cpu < smp_cpus; cpu++) {
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
|
|
if (arm_cpu_mp_affinity(armcpu) & ARM_AFF3_MASK) {
|
|
addr_cells = 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/cpus");
|
|
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#address-cells", addr_cells);
|
|
qemu_fdt_setprop_cell(ms->fdt, "/cpus", "#size-cells", 0x0);
|
|
|
|
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
CPUState *cs = CPU(armcpu);
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "cpu");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
armcpu->dtb_compatible);
|
|
|
|
if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"enable-method", "psci");
|
|
}
|
|
|
|
if (addr_cells == 2) {
|
|
qemu_fdt_setprop_u64(ms->fdt, nodename, "reg",
|
|
arm_cpu_mp_affinity(armcpu));
|
|
} else {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "reg",
|
|
arm_cpu_mp_affinity(armcpu));
|
|
}
|
|
|
|
if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "numa-node-id",
|
|
ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
|
|
}
|
|
|
|
if (!vmc->no_cpu_topology) {
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle",
|
|
qemu_fdt_alloc_phandle(ms->fdt));
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
if (!vmc->no_cpu_topology) {
|
|
/*
|
|
* Add vCPU topology description through fdt node cpu-map.
|
|
*
|
|
* See Linux Documentation/devicetree/bindings/cpu/cpu-topology.txt
|
|
* In a SMP system, the hierarchy of CPUs can be defined through
|
|
* four entities that are used to describe the layout of CPUs in
|
|
* the system: socket/cluster/core/thread.
|
|
*
|
|
* A socket node represents the boundary of system physical package
|
|
* and its child nodes must be one or more cluster nodes. A system
|
|
* can contain several layers of clustering within a single physical
|
|
* package and cluster nodes can be contained in parent cluster nodes.
|
|
*
|
|
* Note: currently we only support one layer of clustering within
|
|
* each physical package.
|
|
*/
|
|
qemu_fdt_add_subnode(ms->fdt, "/cpus/cpu-map");
|
|
|
|
for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *cpu_path = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
char *map_path;
|
|
|
|
if (ms->smp.threads > 1) {
|
|
map_path = g_strdup_printf(
|
|
"/cpus/cpu-map/socket%d/cluster%d/core%d/thread%d",
|
|
cpu / (ms->smp.clusters * ms->smp.cores * ms->smp.threads),
|
|
(cpu / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters,
|
|
(cpu / ms->smp.threads) % ms->smp.cores,
|
|
cpu % ms->smp.threads);
|
|
} else {
|
|
map_path = g_strdup_printf(
|
|
"/cpus/cpu-map/socket%d/cluster%d/core%d",
|
|
cpu / (ms->smp.clusters * ms->smp.cores),
|
|
(cpu / ms->smp.cores) % ms->smp.clusters,
|
|
cpu % ms->smp.cores);
|
|
}
|
|
qemu_fdt_add_path(ms->fdt, map_path);
|
|
qemu_fdt_setprop_phandle(ms->fdt, map_path, "cpu", cpu_path);
|
|
|
|
g_free(map_path);
|
|
g_free(cpu_path);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void fdt_add_its_gic_node(VirtMachineState *vms)
|
|
{
|
|
char *nodename;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
nodename = g_strdup_printf("/intc/its@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_ITS].base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v3-its");
|
|
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#msi-cells", 1);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_ITS].base,
|
|
2, vms->memmap[VIRT_GIC_ITS].size);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_v2m_gic_node(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_V2M].base);
|
|
vms->msi_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v2m-frame");
|
|
qemu_fdt_setprop(ms->fdt, nodename, "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_V2M].base,
|
|
2, vms->memmap[VIRT_GIC_V2M].size);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->msi_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_gic_node(VirtMachineState *vms)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
vms->gic_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
qemu_fdt_setprop_cell(ms->fdt, "/", "interrupt-parent", vms->gic_phandle);
|
|
|
|
nodename = g_strdup_printf("/intc@%" PRIx64,
|
|
vms->memmap[VIRT_GIC_DIST].base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 3);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-controller", NULL, 0);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 0x2);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "ranges", NULL, 0);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
int nb_redist_regions = virt_gicv3_redist_region_count(vms);
|
|
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,gic-v3");
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename,
|
|
"#redistributor-regions", nb_redist_regions);
|
|
|
|
if (nb_redist_regions == 1) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_REDIST].base,
|
|
2, vms->memmap[VIRT_GIC_REDIST].size);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_REDIST].base,
|
|
2, vms->memmap[VIRT_GIC_REDIST].size,
|
|
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
|
|
2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
|
|
}
|
|
|
|
if (vms->virt) {
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
}
|
|
} else {
|
|
/* 'cortex-a15-gic' means 'GIC v2' */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible",
|
|
"arm,cortex-a15-gic");
|
|
if (!vms->virt) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_CPU].base,
|
|
2, vms->memmap[VIRT_GIC_CPU].size);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, vms->memmap[VIRT_GIC_DIST].base,
|
|
2, vms->memmap[VIRT_GIC_DIST].size,
|
|
2, vms->memmap[VIRT_GIC_CPU].base,
|
|
2, vms->memmap[VIRT_GIC_CPU].size,
|
|
2, vms->memmap[VIRT_GIC_HYP].base,
|
|
2, vms->memmap[VIRT_GIC_HYP].size,
|
|
2, vms->memmap[VIRT_GIC_VCPU].base,
|
|
2, vms->memmap[VIRT_GIC_VCPU].size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(ARCH_GIC_MAINT_IRQ),
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", vms->gic_phandle);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void fdt_add_pmu_nodes(const VirtMachineState *vms)
|
|
{
|
|
ARMCPU *armcpu = ARM_CPU(first_cpu);
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
|
|
assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
|
|
return;
|
|
}
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH,
|
|
(1 << MACHINE(vms)->smp.cpus) - 1);
|
|
}
|
|
|
|
qemu_fdt_add_subnode(ms->fdt, "/pmu");
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-pmuv3";
|
|
qemu_fdt_setprop(ms->fdt, "/pmu", "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_cells(ms->fdt, "/pmu", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI,
|
|
INTID_TO_PPI(VIRTUAL_PMU_IRQ), irqflags);
|
|
}
|
|
}
|
|
|
|
static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
|
|
{
|
|
DeviceState *dev;
|
|
MachineState *ms = MACHINE(vms);
|
|
int irq = vms->irqmap[VIRT_ACPI_GED];
|
|
uint32_t event = ACPI_GED_PWR_DOWN_EVT;
|
|
|
|
if (ms->ram_slots) {
|
|
event |= ACPI_GED_MEM_HOTPLUG_EVT;
|
|
}
|
|
|
|
if (ms->nvdimms_state->is_enabled) {
|
|
event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
|
|
}
|
|
|
|
dev = qdev_new(TYPE_ACPI_GED);
|
|
qdev_prop_set_uint32(dev, "ged-event", event);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
return dev;
|
|
}
|
|
|
|
static void create_its(VirtMachineState *vms)
|
|
{
|
|
const char *itsclass = its_class_name();
|
|
DeviceState *dev;
|
|
|
|
if (!strcmp(itsclass, "arm-gicv3-its")) {
|
|
if (!vms->tcg_its) {
|
|
itsclass = NULL;
|
|
}
|
|
}
|
|
|
|
if (!itsclass) {
|
|
/* Do nothing if not supported */
|
|
return;
|
|
}
|
|
|
|
dev = qdev_new(itsclass);
|
|
|
|
object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
|
|
&error_abort);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
|
|
|
|
fdt_add_its_gic_node(vms);
|
|
vms->msi_controller = VIRT_MSI_CTRL_ITS;
|
|
}
|
|
|
|
static void create_v2m(VirtMachineState *vms)
|
|
{
|
|
int i;
|
|
int irq = vms->irqmap[VIRT_GIC_V2M];
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_new("arm-gicv2m");
|
|
qdev_prop_set_uint32(dev, "base-spi", irq);
|
|
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
|
|
|
|
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
}
|
|
|
|
fdt_add_v2m_gic_node(vms);
|
|
vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
|
|
}
|
|
|
|
/*
|
|
* If the CPU has FEAT_NMI, then turn on the NMI support in the GICv3 too.
|
|
* It's permitted to have a configuration with NMI in the CPU (and thus the
|
|
* GICv3 CPU interface) but not in the distributor/redistributors, but it's
|
|
* not very useful.
|
|
*/
|
|
static bool gicv3_nmi_present(VirtMachineState *vms)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(0));
|
|
|
|
return tcg_enabled() && cpu_isar_feature(aa64_nmi, cpu) &&
|
|
(vms->gic_version != VIRT_GIC_VERSION_2);
|
|
}
|
|
|
|
static void create_gic(VirtMachineState *vms, MemoryRegion *mem)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
/* We create a standalone GIC */
|
|
SysBusDevice *gicbusdev;
|
|
const char *gictype;
|
|
int i;
|
|
unsigned int smp_cpus = ms->smp.cpus;
|
|
uint32_t nb_redist_regions = 0;
|
|
int revision;
|
|
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
gictype = gic_class_name();
|
|
} else {
|
|
gictype = gicv3_class_name();
|
|
}
|
|
|
|
switch (vms->gic_version) {
|
|
case VIRT_GIC_VERSION_2:
|
|
revision = 2;
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
revision = 3;
|
|
break;
|
|
case VIRT_GIC_VERSION_4:
|
|
revision = 4;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
vms->gic = qdev_new(gictype);
|
|
qdev_prop_set_uint32(vms->gic, "revision", revision);
|
|
qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
|
|
/* Note that the num-irq property counts both internal and external
|
|
* interrupts; there are always 32 of the former (mandated by GIC spec).
|
|
*/
|
|
qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
|
|
}
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
QList *redist_region_count;
|
|
uint32_t redist0_capacity = virt_redist_capacity(vms, VIRT_GIC_REDIST);
|
|
uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
|
|
|
|
nb_redist_regions = virt_gicv3_redist_region_count(vms);
|
|
|
|
redist_region_count = qlist_new();
|
|
qlist_append_int(redist_region_count, redist0_count);
|
|
if (nb_redist_regions == 2) {
|
|
uint32_t redist1_capacity =
|
|
virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
|
|
|
|
qlist_append_int(redist_region_count,
|
|
MIN(smp_cpus - redist0_count, redist1_capacity));
|
|
}
|
|
qdev_prop_set_array(vms->gic, "redist-region-count",
|
|
redist_region_count);
|
|
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
if (vms->tcg_its) {
|
|
object_property_set_link(OBJECT(vms->gic), "sysmem",
|
|
OBJECT(mem), &error_fatal);
|
|
qdev_prop_set_bit(vms->gic, "has-lpi", true);
|
|
}
|
|
}
|
|
} else {
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
|
|
vms->virt);
|
|
}
|
|
}
|
|
|
|
if (gicv3_nmi_present(vms)) {
|
|
qdev_prop_set_bit(vms->gic, "has-nmi", true);
|
|
}
|
|
|
|
gicbusdev = SYS_BUS_DEVICE(vms->gic);
|
|
sysbus_realize_and_unref(gicbusdev, &error_fatal);
|
|
sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
|
|
if (nb_redist_regions == 2) {
|
|
sysbus_mmio_map(gicbusdev, 2,
|
|
vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
|
|
}
|
|
} else {
|
|
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
|
|
if (vms->virt) {
|
|
sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
|
|
sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
|
|
}
|
|
}
|
|
|
|
/* Wire the outputs from each CPU's generic timer and the GICv3
|
|
* maintenance interrupt signal to the appropriate GIC PPI inputs,
|
|
* and the GIC's IRQ/FIQ/VIRQ/VFIQ/NMI/VINMI interrupt outputs to the
|
|
* CPU's inputs.
|
|
*/
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
|
|
int intidbase = NUM_IRQS + i * GIC_INTERNAL;
|
|
/* Mapping from the output timer irq lines from the CPU to the
|
|
* GIC PPI inputs we use for the virt board.
|
|
*/
|
|
const int timer_irq[] = {
|
|
[GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
|
|
[GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
|
|
[GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
|
|
[GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
|
|
[GTIMER_HYPVIRT] = ARCH_TIMER_NS_EL2_VIRT_IRQ,
|
|
};
|
|
|
|
for (unsigned irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
|
|
qdev_connect_gpio_out(cpudev, irq,
|
|
qdev_get_gpio_in(vms->gic,
|
|
intidbase + timer_irq[irq]));
|
|
}
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
qemu_irq irq = qdev_get_gpio_in(vms->gic,
|
|
intidbase + ARCH_GIC_MAINT_IRQ);
|
|
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
|
|
0, irq);
|
|
} else if (vms->virt) {
|
|
qemu_irq irq = qdev_get_gpio_in(vms->gic,
|
|
intidbase + ARCH_GIC_MAINT_IRQ);
|
|
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
|
|
}
|
|
|
|
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
|
|
qdev_get_gpio_in(vms->gic, intidbase
|
|
+ VIRTUAL_PMU_IRQ));
|
|
|
|
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
sysbus_connect_irq(gicbusdev, i + smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
|
sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
|
|
sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2) {
|
|
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_NMI));
|
|
sysbus_connect_irq(gicbusdev, i + 5 * smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_VINMI));
|
|
}
|
|
}
|
|
|
|
fdt_add_gic_node(vms);
|
|
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2 && vms->its) {
|
|
create_its(vms);
|
|
} else if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
create_v2m(vms);
|
|
}
|
|
}
|
|
|
|
static void create_uart(const VirtMachineState *vms, int uart,
|
|
MemoryRegion *mem, Chardev *chr, bool secure)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[uart].base;
|
|
hwaddr size = vms->memmap[uart].size;
|
|
int irq = vms->irqmap[uart];
|
|
const char compat[] = "arm,pl011\0arm,primecell";
|
|
const char clocknames[] = "uartclk\0apb_pclk";
|
|
DeviceState *dev = qdev_new(TYPE_PL011);
|
|
SysBusDevice *s = SYS_BUS_DEVICE(dev);
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
qdev_prop_set_chr(dev, "chardev", chr);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
memory_region_add_subregion(mem, base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
/* Note that we can't use setprop_string because of the embedded NUL */
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "clocks",
|
|
vms->clock_phandle, vms->clock_phandle);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "clock-names",
|
|
clocknames, sizeof(clocknames));
|
|
|
|
if (uart == VIRT_UART0) {
|
|
qemu_fdt_setprop_string(ms->fdt, "/chosen", "stdout-path", nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial0", nodename);
|
|
} else {
|
|
qemu_fdt_setprop_string(ms->fdt, "/aliases", "serial1", nodename);
|
|
}
|
|
if (secure) {
|
|
/* Mark as not usable by the normal world */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
|
|
qemu_fdt_setprop_string(ms->fdt, "/secure-chosen", "stdout-path",
|
|
nodename);
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_rtc(const VirtMachineState *vms)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_RTC].base;
|
|
hwaddr size = vms->memmap[VIRT_RTC].size;
|
|
int irq = vms->irqmap[VIRT_RTC];
|
|
const char compat[] = "arm,pl031\0arm,primecell";
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
|
|
g_free(nodename);
|
|
}
|
|
|
|
static DeviceState *gpio_key_dev;
|
|
static void virt_powerdown_req(Notifier *n, void *opaque)
|
|
{
|
|
VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
|
|
|
|
if (s->acpi_dev) {
|
|
acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
|
|
} else {
|
|
/* use gpio Pin for power button event */
|
|
qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
|
|
}
|
|
}
|
|
|
|
static void create_gpio_keys(char *fdt, DeviceState *pl061_dev,
|
|
uint32_t phandle)
|
|
{
|
|
gpio_key_dev = sysbus_create_simple("gpio-key", -1,
|
|
qdev_get_gpio_in(pl061_dev,
|
|
GPIO_PIN_POWER_BUTTON));
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-keys");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-keys", "compatible", "gpio-keys");
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-keys/poweroff");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-keys/poweroff",
|
|
"label", "GPIO Key Poweroff");
|
|
qemu_fdt_setprop_cell(fdt, "/gpio-keys/poweroff", "linux,code",
|
|
KEY_POWER);
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-keys/poweroff",
|
|
"gpios", phandle, GPIO_PIN_POWER_BUTTON, 0);
|
|
}
|
|
|
|
#define SECURE_GPIO_POWEROFF 0
|
|
#define SECURE_GPIO_RESET 1
|
|
|
|
static void create_secure_gpio_pwr(char *fdt, DeviceState *pl061_dev,
|
|
uint32_t phandle)
|
|
{
|
|
DeviceState *gpio_pwr_dev;
|
|
|
|
/* gpio-pwr */
|
|
gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
|
|
|
|
/* connect secure pl061 to gpio-pwr */
|
|
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
|
|
qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
|
|
qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
|
|
qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-poweroff");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "compatible",
|
|
"gpio-poweroff");
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-poweroff",
|
|
"gpios", phandle, SECURE_GPIO_POWEROFF, 0);
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "status", "disabled");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-poweroff", "secure-status",
|
|
"okay");
|
|
|
|
qemu_fdt_add_subnode(fdt, "/gpio-restart");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "compatible",
|
|
"gpio-restart");
|
|
qemu_fdt_setprop_cells(fdt, "/gpio-restart",
|
|
"gpios", phandle, SECURE_GPIO_RESET, 0);
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "status", "disabled");
|
|
qemu_fdt_setprop_string(fdt, "/gpio-restart", "secure-status",
|
|
"okay");
|
|
}
|
|
|
|
static void create_gpio_devices(const VirtMachineState *vms, int gpio,
|
|
MemoryRegion *mem)
|
|
{
|
|
char *nodename;
|
|
DeviceState *pl061_dev;
|
|
hwaddr base = vms->memmap[gpio].base;
|
|
hwaddr size = vms->memmap[gpio].size;
|
|
int irq = vms->irqmap[gpio];
|
|
const char compat[] = "arm,pl061\0arm,primecell";
|
|
SysBusDevice *s;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
pl061_dev = qdev_new("pl061");
|
|
/* Pull lines down to 0 if not driven by the PL061 */
|
|
qdev_prop_set_uint32(pl061_dev, "pullups", 0);
|
|
qdev_prop_set_uint32(pl061_dev, "pulldowns", 0xff);
|
|
s = SYS_BUS_DEVICE(pl061_dev);
|
|
sysbus_realize_and_unref(s, &error_fatal);
|
|
memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
|
|
sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
|
|
|
|
uint32_t phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
nodename = g_strdup_printf("/pl061@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#gpio-cells", 2);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "gpio-controller", NULL, 0);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "clocks", vms->clock_phandle);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "clock-names", "apb_pclk");
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "phandle", phandle);
|
|
|
|
if (gpio != VIRT_GPIO) {
|
|
/* Mark as not usable by the normal world */
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
}
|
|
g_free(nodename);
|
|
|
|
/* Child gpio devices */
|
|
if (gpio == VIRT_GPIO) {
|
|
create_gpio_keys(ms->fdt, pl061_dev, phandle);
|
|
} else {
|
|
create_secure_gpio_pwr(ms->fdt, pl061_dev, phandle);
|
|
}
|
|
}
|
|
|
|
static void create_virtio_devices(const VirtMachineState *vms)
|
|
{
|
|
int i;
|
|
hwaddr size = vms->memmap[VIRT_MMIO].size;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
/* We create the transports in forwards order. Since qbus_realize()
|
|
* prepends (not appends) new child buses, the incrementing loop below will
|
|
* create a list of virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When a -device option is processed from the command line,
|
|
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
|
|
* order. The upshot is that -device options in increasing command line
|
|
* order are mapped to virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When this code was originally written, that arrangement ensured that the
|
|
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
|
|
* the first -device on the command line. (The end-to-end order is a
|
|
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
|
|
* guest kernel's name-to-address assignment strategy.)
|
|
*
|
|
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
|
|
* the message, if not necessarily the code, of commit 70161ff336.
|
|
* Therefore the loop now establishes the inverse of the original intent.
|
|
*
|
|
* Unfortunately, we can't counteract the kernel change by reversing the
|
|
* loop; it would break existing command lines.
|
|
*
|
|
* In any case, the kernel makes no guarantee about the stability of
|
|
* enumeration order of virtio devices (as demonstrated by it changing
|
|
* between kernel versions). For reliable and stable identification
|
|
* of disks users must use UUIDs or similar mechanisms.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
sysbus_create_simple("virtio-mmio", base,
|
|
qdev_get_gpio_in(vms->gic, irq));
|
|
}
|
|
|
|
/* We add dtb nodes in reverse order so that they appear in the finished
|
|
* device tree lowest address first.
|
|
*
|
|
* Note that this mapping is independent of the loop above. The previous
|
|
* loop influences virtio device to virtio transport assignment, whereas
|
|
* this loop controls how virtio transports are laid out in the dtb.
|
|
*/
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
char *nodename;
|
|
int irq = vms->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
|
|
|
|
static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
|
|
const char *name,
|
|
const char *alias_prop_name)
|
|
{
|
|
/*
|
|
* Create a single flash device. We use the same parameters as
|
|
* the flash devices on the Versatile Express board.
|
|
*/
|
|
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
|
|
|
|
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
|
|
qdev_prop_set_uint8(dev, "width", 4);
|
|
qdev_prop_set_uint8(dev, "device-width", 2);
|
|
qdev_prop_set_bit(dev, "big-endian", false);
|
|
qdev_prop_set_uint16(dev, "id0", 0x89);
|
|
qdev_prop_set_uint16(dev, "id1", 0x18);
|
|
qdev_prop_set_uint16(dev, "id2", 0x00);
|
|
qdev_prop_set_uint16(dev, "id3", 0x00);
|
|
qdev_prop_set_string(dev, "name", name);
|
|
object_property_add_child(OBJECT(vms), name, OBJECT(dev));
|
|
object_property_add_alias(OBJECT(vms), alias_prop_name,
|
|
OBJECT(dev), "drive");
|
|
return PFLASH_CFI01(dev);
|
|
}
|
|
|
|
static void virt_flash_create(VirtMachineState *vms)
|
|
{
|
|
vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
|
|
vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
|
|
}
|
|
|
|
static void virt_flash_map1(PFlashCFI01 *flash,
|
|
hwaddr base, hwaddr size,
|
|
MemoryRegion *sysmem)
|
|
{
|
|
DeviceState *dev = DEVICE(flash);
|
|
|
|
assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
|
|
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
|
|
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
memory_region_add_subregion(sysmem, base,
|
|
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
|
|
0));
|
|
}
|
|
|
|
static void virt_flash_map(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
/*
|
|
* Map two flash devices to fill the VIRT_FLASH space in the memmap.
|
|
* sysmem is the system memory space. secure_sysmem is the secure view
|
|
* of the system, and the first flash device should be made visible only
|
|
* there. The second flash device is visible to both secure and nonsecure.
|
|
* If sysmem == secure_sysmem this means there is no separate Secure
|
|
* address space and both flash devices are generally visible.
|
|
*/
|
|
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
|
|
|
|
virt_flash_map1(vms->flash[0], flashbase, flashsize,
|
|
secure_sysmem);
|
|
virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
|
|
sysmem);
|
|
}
|
|
|
|
static void virt_flash_fdt(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
|
|
MachineState *ms = MACHINE(vms);
|
|
char *nodename;
|
|
|
|
if (sysmem == secure_sysmem) {
|
|
/* Report both flash devices as a single node in the DT */
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize,
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
} else {
|
|
/*
|
|
* Report the devices as separate nodes so we can mark one as
|
|
* only visible to the secure world.
|
|
*/
|
|
nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
g_free(nodename);
|
|
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase + flashsize);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static bool virt_firmware_init(VirtMachineState *vms,
|
|
MemoryRegion *sysmem,
|
|
MemoryRegion *secure_sysmem)
|
|
{
|
|
int i;
|
|
const char *bios_name;
|
|
BlockBackend *pflash_blk0;
|
|
|
|
/* Map legacy -drive if=pflash to machine properties */
|
|
for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
|
|
pflash_cfi01_legacy_drive(vms->flash[i],
|
|
drive_get(IF_PFLASH, 0, i));
|
|
}
|
|
|
|
virt_flash_map(vms, sysmem, secure_sysmem);
|
|
|
|
pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
|
|
|
|
bios_name = MACHINE(vms)->firmware;
|
|
if (bios_name) {
|
|
char *fname;
|
|
MemoryRegion *mr;
|
|
int image_size;
|
|
|
|
if (pflash_blk0) {
|
|
error_report("The contents of the first flash device may be "
|
|
"specified with -bios or with -drive if=pflash... "
|
|
"but you cannot use both options at once");
|
|
exit(1);
|
|
}
|
|
|
|
/* Fall back to -bios */
|
|
|
|
fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!fname) {
|
|
error_report("Could not find ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
|
|
image_size = load_image_mr(fname, mr);
|
|
g_free(fname);
|
|
if (image_size < 0) {
|
|
error_report("Could not load ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
return pflash_blk0 || bios_name;
|
|
}
|
|
|
|
static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
hwaddr base = vms->memmap[VIRT_FW_CFG].base;
|
|
hwaddr size = vms->memmap[VIRT_FW_CFG].size;
|
|
FWCfgState *fw_cfg;
|
|
char *nodename;
|
|
|
|
fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
|
|
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
|
|
|
|
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "qemu,fw-cfg-mmio");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
g_free(nodename);
|
|
return fw_cfg;
|
|
}
|
|
|
|
static void create_pcie_irq_map(const MachineState *ms,
|
|
uint32_t gic_phandle,
|
|
int first_irq, const char *nodename)
|
|
{
|
|
int devfn, pin;
|
|
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
|
|
uint32_t *irq_map = full_irq_map;
|
|
|
|
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
|
|
for (pin = 0; pin < 4; pin++) {
|
|
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
|
|
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
|
|
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
int i;
|
|
|
|
uint32_t map[] = {
|
|
devfn << 8, 0, 0, /* devfn */
|
|
pin + 1, /* PCI pin */
|
|
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
|
|
|
|
/* Convert map to big endian */
|
|
for (i = 0; i < 10; i++) {
|
|
irq_map[i] = cpu_to_be32(map[i]);
|
|
}
|
|
irq_map += 10;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop(ms->fdt, nodename, "interrupt-map",
|
|
full_irq_map, sizeof(full_irq_map));
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "interrupt-map-mask",
|
|
cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
|
|
0, 0,
|
|
0x7 /* PCI irq */);
|
|
}
|
|
|
|
static void create_smmu(const VirtMachineState *vms,
|
|
PCIBus *bus)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
char *node;
|
|
const char compat[] = "arm,smmu-v3";
|
|
int irq = vms->irqmap[VIRT_SMMU];
|
|
int i;
|
|
hwaddr base = vms->memmap[VIRT_SMMU].base;
|
|
hwaddr size = vms->memmap[VIRT_SMMU].size;
|
|
const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
|
|
DeviceState *dev;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
|
|
return;
|
|
}
|
|
|
|
dev = qdev_new(TYPE_ARM_SMMUV3);
|
|
|
|
if (!vmc->no_nested_smmu) {
|
|
object_property_set_str(OBJECT(dev), "stage", "nested", &error_fatal);
|
|
}
|
|
object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
|
|
&error_abort);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
|
|
for (i = 0; i < NUM_SMMU_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
}
|
|
|
|
node = g_strdup_printf("/smmuv3@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, node);
|
|
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg", 2, base, 2, size);
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, node, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
|
|
GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
|
|
qemu_fdt_setprop(ms->fdt, node, "interrupt-names", irq_names,
|
|
sizeof(irq_names));
|
|
|
|
qemu_fdt_setprop(ms->fdt, node, "dma-coherent", NULL, 0);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
|
|
g_free(node);
|
|
}
|
|
|
|
static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
|
|
{
|
|
const char compat[] = "virtio,pci-iommu\0pci1af4,1057";
|
|
uint16_t bdf = vms->virtio_iommu_bdf;
|
|
MachineState *ms = MACHINE(vms);
|
|
char *node;
|
|
|
|
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
|
|
node = g_strdup_printf("%s/virtio_iommu@%x,%x", vms->pciehb_nodename,
|
|
PCI_SLOT(bdf), PCI_FUNC(bdf));
|
|
qemu_fdt_add_subnode(ms->fdt, node);
|
|
qemu_fdt_setprop(ms->fdt, node, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, node, "reg",
|
|
1, bdf << 8, 1, 0, 1, 0,
|
|
1, 0, 1, 0);
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "#iommu-cells", 1);
|
|
qemu_fdt_setprop_cell(ms->fdt, node, "phandle", vms->iommu_phandle);
|
|
g_free(node);
|
|
|
|
qemu_fdt_setprop_cells(ms->fdt, vms->pciehb_nodename, "iommu-map",
|
|
0x0, vms->iommu_phandle, 0x0, bdf,
|
|
bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
|
|
}
|
|
|
|
static void create_pcie(VirtMachineState *vms)
|
|
{
|
|
hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
|
|
hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
|
|
hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
|
|
hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
|
|
hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
|
|
hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
|
|
hwaddr base_ecam, size_ecam;
|
|
hwaddr base = base_mmio;
|
|
int nr_pcie_buses;
|
|
int irq = vms->irqmap[VIRT_PCIE];
|
|
MemoryRegion *mmio_alias;
|
|
MemoryRegion *mmio_reg;
|
|
MemoryRegion *ecam_alias;
|
|
MemoryRegion *ecam_reg;
|
|
DeviceState *dev;
|
|
char *nodename;
|
|
int i, ecam_id;
|
|
PCIHostState *pci;
|
|
MachineState *ms = MACHINE(vms);
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
|
|
dev = qdev_new(TYPE_GPEX_HOST);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
|
|
ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
|
|
base_ecam = vms->memmap[ecam_id].base;
|
|
size_ecam = vms->memmap[ecam_id].size;
|
|
nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
|
|
/* Map only the first size_ecam bytes of ECAM space */
|
|
ecam_alias = g_new0(MemoryRegion, 1);
|
|
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
|
|
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
|
|
ecam_reg, 0, size_ecam);
|
|
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
|
|
|
|
/* Map the MMIO window into system address space so as to expose
|
|
* the section of PCI MMIO space which starts at the same base address
|
|
* (ie 1:1 mapping for that part of PCI MMIO space visible through
|
|
* the window).
|
|
*/
|
|
mmio_alias = g_new0(MemoryRegion, 1);
|
|
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
|
|
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
|
|
mmio_reg, base_mmio, size_mmio);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
|
|
|
|
if (vms->highmem_mmio) {
|
|
/* Map high MMIO space */
|
|
MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
|
|
|
|
memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
|
|
mmio_reg, base_mmio_high, size_mmio_high);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio_high,
|
|
high_mmio_alias);
|
|
}
|
|
|
|
/* Map IO port space */
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
|
|
|
|
for (i = 0; i < GPEX_NUM_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
|
|
qdev_get_gpio_in(vms->gic, irq + i));
|
|
gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
|
|
}
|
|
|
|
pci = PCI_HOST_BRIDGE(dev);
|
|
pci->bypass_iommu = vms->default_bus_bypass_iommu;
|
|
vms->bus = pci->bus;
|
|
if (vms->bus) {
|
|
pci_init_nic_devices(pci->bus, mc->default_nic);
|
|
}
|
|
|
|
nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename,
|
|
"compatible", "pci-host-ecam-generic");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "pci");
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#address-cells", 3);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#size-cells", 2);
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "linux,pci-domain", 0);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "bus-range", 0,
|
|
nr_pcie_buses - 1);
|
|
qemu_fdt_setprop(ms->fdt, nodename, "dma-coherent", NULL, 0);
|
|
|
|
if (vms->msi_phandle) {
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "msi-map",
|
|
0, vms->msi_phandle, 0, 0x10000);
|
|
}
|
|
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg",
|
|
2, base_ecam, 2, size_ecam);
|
|
|
|
if (vms->highmem_mmio) {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio,
|
|
1, FDT_PCI_RANGE_MMIO_64BIT,
|
|
2, base_mmio_high,
|
|
2, base_mmio_high, 2, size_mmio_high);
|
|
} else {
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio);
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(ms->fdt, nodename, "#interrupt-cells", 1);
|
|
create_pcie_irq_map(ms, vms->gic_phandle, irq, nodename);
|
|
|
|
if (vms->iommu) {
|
|
vms->iommu_phandle = qemu_fdt_alloc_phandle(ms->fdt);
|
|
|
|
switch (vms->iommu) {
|
|
case VIRT_IOMMU_SMMUV3:
|
|
create_smmu(vms, vms->bus);
|
|
qemu_fdt_setprop_cells(ms->fdt, nodename, "iommu-map",
|
|
0x0, vms->iommu_phandle, 0x0, 0x10000);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void create_platform_bus(VirtMachineState *vms)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *s;
|
|
int i;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
|
|
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
|
|
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
|
|
qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
|
|
qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
|
|
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
|
|
vms->platform_bus_dev = dev;
|
|
|
|
s = SYS_BUS_DEVICE(dev);
|
|
for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
|
|
int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
|
|
sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
|
|
}
|
|
|
|
memory_region_add_subregion(sysmem,
|
|
vms->memmap[VIRT_PLATFORM_BUS].base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
}
|
|
|
|
static void create_tag_ram(MemoryRegion *tag_sysmem,
|
|
hwaddr base, hwaddr size,
|
|
const char *name)
|
|
{
|
|
MemoryRegion *tagram = g_new(MemoryRegion, 1);
|
|
|
|
memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
|
|
memory_region_add_subregion(tag_sysmem, base / 32, tagram);
|
|
}
|
|
|
|
static void create_secure_ram(VirtMachineState *vms,
|
|
MemoryRegion *secure_sysmem,
|
|
MemoryRegion *secure_tag_sysmem)
|
|
{
|
|
MemoryRegion *secram = g_new(MemoryRegion, 1);
|
|
char *nodename;
|
|
hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
|
|
hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
|
|
MachineState *ms = MACHINE(vms);
|
|
|
|
memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
|
|
&error_fatal);
|
|
memory_region_add_subregion(secure_sysmem, base, secram);
|
|
|
|
nodename = g_strdup_printf("/secram@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(ms->fdt, nodename);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "device_type", "memory");
|
|
qemu_fdt_setprop_sized_cells(ms->fdt, nodename, "reg", 2, base, 2, size);
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "status", "disabled");
|
|
qemu_fdt_setprop_string(ms->fdt, nodename, "secure-status", "okay");
|
|
|
|
if (secure_tag_sysmem) {
|
|
create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
|
|
}
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
|
|
{
|
|
const VirtMachineState *board = container_of(binfo, VirtMachineState,
|
|
bootinfo);
|
|
MachineState *ms = MACHINE(board);
|
|
|
|
|
|
*fdt_size = board->fdt_size;
|
|
return ms->fdt;
|
|
}
|
|
|
|
static void virt_build_smbios(VirtMachineState *vms)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
MachineState *ms = MACHINE(vms);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
uint8_t *smbios_tables, *smbios_anchor;
|
|
size_t smbios_tables_len, smbios_anchor_len;
|
|
struct smbios_phys_mem_area mem_array;
|
|
const char *product = "QEMU Virtual Machine";
|
|
|
|
if (kvm_enabled()) {
|
|
product = "KVM Virtual Machine";
|
|
}
|
|
|
|
smbios_set_defaults("QEMU", product,
|
|
vmc->smbios_old_sys_ver ? "1.0" : mc->name);
|
|
|
|
/* build the array of physical mem area from base_memmap */
|
|
mem_array.address = vms->memmap[VIRT_MEM].base;
|
|
mem_array.length = ms->ram_size;
|
|
|
|
smbios_get_tables(ms, SMBIOS_ENTRY_POINT_TYPE_64, &mem_array, 1,
|
|
&smbios_tables, &smbios_tables_len,
|
|
&smbios_anchor, &smbios_anchor_len,
|
|
&error_fatal);
|
|
|
|
if (smbios_anchor) {
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
|
|
smbios_tables, smbios_tables_len);
|
|
fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
|
|
smbios_anchor, smbios_anchor_len);
|
|
}
|
|
}
|
|
|
|
static
|
|
void virt_machine_done(Notifier *notifier, void *data)
|
|
{
|
|
VirtMachineState *vms = container_of(notifier, VirtMachineState,
|
|
machine_done);
|
|
MachineState *ms = MACHINE(vms);
|
|
ARMCPU *cpu = ARM_CPU(first_cpu);
|
|
struct arm_boot_info *info = &vms->bootinfo;
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
|
|
/*
|
|
* If the user provided a dtb, we assume the dynamic sysbus nodes
|
|
* already are integrated there. This corresponds to a use case where
|
|
* the dynamic sysbus nodes are complex and their generation is not yet
|
|
* supported. In that case the user can take charge of the guest dt
|
|
* while qemu takes charge of the qom stuff.
|
|
*/
|
|
if (info->dtb_filename == NULL) {
|
|
platform_bus_add_all_fdt_nodes(ms->fdt, "/intc",
|
|
vms->memmap[VIRT_PLATFORM_BUS].base,
|
|
vms->memmap[VIRT_PLATFORM_BUS].size,
|
|
vms->irqmap[VIRT_PLATFORM_BUS]);
|
|
}
|
|
if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
|
|
exit(1);
|
|
}
|
|
|
|
fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
|
|
|
|
virt_acpi_setup(vms);
|
|
virt_build_smbios(vms);
|
|
}
|
|
|
|
static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
|
|
{
|
|
uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
if (!vmc->disallow_affinity_adjustment) {
|
|
/* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
|
|
* GIC's target-list limitations. 32-bit KVM hosts currently
|
|
* always create clusters of 4 CPUs, but that is expected to
|
|
* change when they gain support for gicv3. When KVM is enabled
|
|
* it will override the changes we make here, therefore our
|
|
* purposes are to make TCG consistent (with 64-bit KVM hosts)
|
|
* and to improve SGI efficiency.
|
|
*/
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
clustersz = GIC_TARGETLIST_BITS;
|
|
} else {
|
|
clustersz = GICV3_TARGETLIST_BITS;
|
|
}
|
|
}
|
|
return arm_build_mp_affinity(idx, clustersz);
|
|
}
|
|
|
|
static inline bool *virt_get_high_memmap_enabled(VirtMachineState *vms,
|
|
int index)
|
|
{
|
|
bool *enabled_array[] = {
|
|
&vms->highmem_redists,
|
|
&vms->highmem_ecam,
|
|
&vms->highmem_mmio,
|
|
};
|
|
|
|
assert(ARRAY_SIZE(extended_memmap) - VIRT_LOWMEMMAP_LAST ==
|
|
ARRAY_SIZE(enabled_array));
|
|
assert(index - VIRT_LOWMEMMAP_LAST < ARRAY_SIZE(enabled_array));
|
|
|
|
return enabled_array[index - VIRT_LOWMEMMAP_LAST];
|
|
}
|
|
|
|
static void virt_set_high_memmap(VirtMachineState *vms,
|
|
hwaddr base, int pa_bits)
|
|
{
|
|
hwaddr region_base, region_size;
|
|
bool *region_enabled, fits;
|
|
int i;
|
|
|
|
for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
|
|
region_enabled = virt_get_high_memmap_enabled(vms, i);
|
|
region_base = ROUND_UP(base, extended_memmap[i].size);
|
|
region_size = extended_memmap[i].size;
|
|
|
|
vms->memmap[i].base = region_base;
|
|
vms->memmap[i].size = region_size;
|
|
|
|
/*
|
|
* Check each device to see if it fits in the PA space,
|
|
* moving highest_gpa as we go. For compatibility, move
|
|
* highest_gpa for disabled fitting devices as well, if
|
|
* the compact layout has been disabled.
|
|
*
|
|
* For each device that doesn't fit, disable it.
|
|
*/
|
|
fits = (region_base + region_size) <= BIT_ULL(pa_bits);
|
|
*region_enabled &= fits;
|
|
if (vms->highmem_compact && !*region_enabled) {
|
|
continue;
|
|
}
|
|
|
|
base = region_base + region_size;
|
|
if (fits) {
|
|
vms->highest_gpa = base - 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void virt_set_memmap(VirtMachineState *vms, int pa_bits)
|
|
{
|
|
MachineState *ms = MACHINE(vms);
|
|
hwaddr base, device_memory_base, device_memory_size, memtop;
|
|
int i;
|
|
|
|
vms->memmap = extended_memmap;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
|
|
vms->memmap[i] = base_memmap[i];
|
|
}
|
|
|
|
if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
|
|
error_report("unsupported number of memory slots: %"PRIu64,
|
|
ms->ram_slots);
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
|
|
/*
|
|
* !highmem is exactly the same as limiting the PA space to 32bit,
|
|
* irrespective of the underlying capabilities of the HW.
|
|
*/
|
|
if (!vms->highmem) {
|
|
pa_bits = 32;
|
|
}
|
|
|
|
/*
|
|
* We compute the base of the high IO region depending on the
|
|
* amount of initial and device memory. The device memory start/size
|
|
* is aligned on 1GiB. We never put the high IO region below 256GiB
|
|
* so that if maxram_size is < 255GiB we keep the legacy memory map.
|
|
* The device region size assumes 1GiB page max alignment per slot.
|
|
*/
|
|
device_memory_base =
|
|
ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
|
|
device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
|
|
|
|
/* Base address of the high IO region */
|
|
memtop = base = device_memory_base + ROUND_UP(device_memory_size, GiB);
|
|
if (memtop > BIT_ULL(pa_bits)) {
|
|
error_report("Addressing limited to %d bits, but memory exceeds it by %llu bytes",
|
|
pa_bits, memtop - BIT_ULL(pa_bits));
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (base < device_memory_base) {
|
|
error_report("maxmem/slots too huge");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
|
|
base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
|
|
}
|
|
|
|
/* We know for sure that at least the memory fits in the PA space */
|
|
vms->highest_gpa = memtop - 1;
|
|
|
|
virt_set_high_memmap(vms, base, pa_bits);
|
|
|
|
if (device_memory_size > 0) {
|
|
machine_memory_devices_init(ms, device_memory_base, device_memory_size);
|
|
}
|
|
}
|
|
|
|
static VirtGICType finalize_gic_version_do(const char *accel_name,
|
|
VirtGICType gic_version,
|
|
int gics_supported,
|
|
unsigned int max_cpus)
|
|
{
|
|
/* Convert host/max/nosel to GIC version number */
|
|
switch (gic_version) {
|
|
case VIRT_GIC_VERSION_HOST:
|
|
if (!kvm_enabled()) {
|
|
error_report("gic-version=host requires KVM");
|
|
exit(1);
|
|
}
|
|
|
|
/* For KVM, gic-version=host means gic-version=max */
|
|
return finalize_gic_version_do(accel_name, VIRT_GIC_VERSION_MAX,
|
|
gics_supported, max_cpus);
|
|
case VIRT_GIC_VERSION_MAX:
|
|
if (gics_supported & VIRT_GIC_VERSION_4_MASK) {
|
|
gic_version = VIRT_GIC_VERSION_4;
|
|
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
|
|
gic_version = VIRT_GIC_VERSION_3;
|
|
} else {
|
|
gic_version = VIRT_GIC_VERSION_2;
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_NOSEL:
|
|
if ((gics_supported & VIRT_GIC_VERSION_2_MASK) &&
|
|
max_cpus <= GIC_NCPU) {
|
|
gic_version = VIRT_GIC_VERSION_2;
|
|
} else if (gics_supported & VIRT_GIC_VERSION_3_MASK) {
|
|
/*
|
|
* in case the host does not support v2 emulation or
|
|
* the end-user requested more than 8 VCPUs we now default
|
|
* to v3. In any case defaulting to v2 would be broken.
|
|
*/
|
|
gic_version = VIRT_GIC_VERSION_3;
|
|
} else if (max_cpus > GIC_NCPU) {
|
|
error_report("%s only supports GICv2 emulation but more than 8 "
|
|
"vcpus are requested", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_2:
|
|
case VIRT_GIC_VERSION_3:
|
|
case VIRT_GIC_VERSION_4:
|
|
break;
|
|
}
|
|
|
|
/* Check chosen version is effectively supported */
|
|
switch (gic_version) {
|
|
case VIRT_GIC_VERSION_2:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_2_MASK)) {
|
|
error_report("%s does not support GICv2 emulation", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_3_MASK)) {
|
|
error_report("%s does not support GICv3 emulation", accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
case VIRT_GIC_VERSION_4:
|
|
if (!(gics_supported & VIRT_GIC_VERSION_4_MASK)) {
|
|
error_report("%s does not support GICv4 emulation, is virtualization=on?",
|
|
accel_name);
|
|
exit(1);
|
|
}
|
|
break;
|
|
default:
|
|
error_report("logic error in finalize_gic_version");
|
|
exit(1);
|
|
break;
|
|
}
|
|
|
|
return gic_version;
|
|
}
|
|
|
|
/*
|
|
* finalize_gic_version - Determines the final gic_version
|
|
* according to the gic-version property
|
|
*
|
|
* Default GIC type is v2
|
|
*/
|
|
static void finalize_gic_version(VirtMachineState *vms)
|
|
{
|
|
const char *accel_name = current_accel_name();
|
|
unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
|
|
int gics_supported = 0;
|
|
|
|
/* Determine which GIC versions the current environment supports */
|
|
if (kvm_enabled() && kvm_irqchip_in_kernel()) {
|
|
int probe_bitmap = kvm_arm_vgic_probe();
|
|
|
|
if (!probe_bitmap) {
|
|
error_report("Unable to determine GIC version supported by host");
|
|
exit(1);
|
|
}
|
|
|
|
if (probe_bitmap & KVM_ARM_VGIC_V2) {
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
}
|
|
if (probe_bitmap & KVM_ARM_VGIC_V3) {
|
|
gics_supported |= VIRT_GIC_VERSION_3_MASK;
|
|
}
|
|
} else if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
|
|
/* KVM w/o kernel irqchip can only deal with GICv2 */
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
accel_name = "KVM with kernel-irqchip=off";
|
|
} else if (tcg_enabled() || hvf_enabled() || qtest_enabled()) {
|
|
gics_supported |= VIRT_GIC_VERSION_2_MASK;
|
|
if (module_object_class_by_name("arm-gicv3")) {
|
|
gics_supported |= VIRT_GIC_VERSION_3_MASK;
|
|
if (vms->virt) {
|
|
/* GICv4 only makes sense if CPU has EL2 */
|
|
gics_supported |= VIRT_GIC_VERSION_4_MASK;
|
|
}
|
|
}
|
|
} else {
|
|
error_report("Unsupported accelerator, can not determine GIC support");
|
|
exit(1);
|
|
}
|
|
|
|
/*
|
|
* Then convert helpers like host/max to concrete GIC versions and ensure
|
|
* the desired version is supported
|
|
*/
|
|
vms->gic_version = finalize_gic_version_do(accel_name, vms->gic_version,
|
|
gics_supported, max_cpus);
|
|
}
|
|
|
|
/*
|
|
* virt_cpu_post_init() must be called after the CPUs have
|
|
* been realized and the GIC has been created.
|
|
*/
|
|
static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
|
|
{
|
|
int max_cpus = MACHINE(vms)->smp.max_cpus;
|
|
bool aarch64, pmu, steal_time;
|
|
CPUState *cpu;
|
|
|
|
aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
|
|
pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
|
|
steal_time = object_property_get_bool(OBJECT(first_cpu),
|
|
"kvm-steal-time", NULL);
|
|
|
|
if (kvm_enabled()) {
|
|
hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
|
|
hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
|
|
|
|
if (steal_time) {
|
|
MemoryRegion *pvtime = g_new(MemoryRegion, 1);
|
|
hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
|
|
|
|
/* The memory region size must be a multiple of host page size. */
|
|
pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
|
|
|
|
if (pvtime_size > pvtime_reg_size) {
|
|
error_report("pvtime requires a %" HWADDR_PRId
|
|
" byte memory region for %d CPUs,"
|
|
" but only %" HWADDR_PRId " has been reserved",
|
|
pvtime_size, max_cpus, pvtime_reg_size);
|
|
exit(1);
|
|
}
|
|
|
|
memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
|
|
memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (pmu) {
|
|
assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
|
|
if (kvm_irqchip_in_kernel()) {
|
|
kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
|
|
}
|
|
kvm_arm_pmu_init(ARM_CPU(cpu));
|
|
}
|
|
if (steal_time) {
|
|
kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
|
|
+ cpu->cpu_index
|
|
* PVTIME_SIZE_PER_CPU);
|
|
}
|
|
}
|
|
} else {
|
|
if (aarch64 && vms->highmem) {
|
|
int requested_pa_size = 64 - clz64(vms->highest_gpa);
|
|
int pamax = arm_pamax(ARM_CPU(first_cpu));
|
|
|
|
if (pamax < requested_pa_size) {
|
|
error_report("VCPU supports less PA bits (%d) than "
|
|
"requested by the memory map (%d)",
|
|
pamax, requested_pa_size);
|
|
exit(1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void machvirt_init(MachineState *machine)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(machine);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
const CPUArchIdList *possible_cpus;
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
MemoryRegion *secure_sysmem = NULL;
|
|
MemoryRegion *tag_sysmem = NULL;
|
|
MemoryRegion *secure_tag_sysmem = NULL;
|
|
int n, virt_max_cpus;
|
|
bool firmware_loaded;
|
|
bool aarch64 = true;
|
|
bool has_ged = !vmc->no_ged;
|
|
unsigned int smp_cpus = machine->smp.cpus;
|
|
unsigned int max_cpus = machine->smp.max_cpus;
|
|
|
|
possible_cpus = mc->possible_cpu_arch_ids(machine);
|
|
|
|
/*
|
|
* In accelerated mode, the memory map is computed earlier in kvm_type()
|
|
* for Linux, or hvf_get_physical_address_range() for macOS to create a
|
|
* VM with the right number of IPA bits.
|
|
*/
|
|
if (!vms->memmap) {
|
|
Object *cpuobj;
|
|
ARMCPU *armcpu;
|
|
int pa_bits;
|
|
|
|
/*
|
|
* Instantiate a temporary CPU object to find out about what
|
|
* we are about to deal with. Once this is done, get rid of
|
|
* the object.
|
|
*/
|
|
cpuobj = object_new(possible_cpus->cpus[0].type);
|
|
armcpu = ARM_CPU(cpuobj);
|
|
|
|
pa_bits = arm_pamax(armcpu);
|
|
|
|
object_unref(cpuobj);
|
|
|
|
virt_set_memmap(vms, pa_bits);
|
|
}
|
|
|
|
/* We can probe only here because during property set
|
|
* KVM is not available yet
|
|
*/
|
|
finalize_gic_version(vms);
|
|
|
|
if (vms->secure) {
|
|
/*
|
|
* The Secure view of the world is the same as the NonSecure,
|
|
* but with a few extra devices. Create it as a container region
|
|
* containing the system memory at low priority; any secure-only
|
|
* devices go in at higher priority and take precedence.
|
|
*/
|
|
secure_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
|
|
UINT64_MAX);
|
|
memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
|
|
}
|
|
|
|
firmware_loaded = virt_firmware_init(vms, sysmem,
|
|
secure_sysmem ?: sysmem);
|
|
|
|
/* If we have an EL3 boot ROM then the assumption is that it will
|
|
* implement PSCI itself, so disable QEMU's internal implementation
|
|
* so it doesn't get in the way. Instead of starting secondary
|
|
* CPUs in PSCI powerdown state we will start them all running and
|
|
* let the boot ROM sort them out.
|
|
* The usual case is that we do use QEMU's PSCI implementation;
|
|
* if the guest has EL2 then we will use SMC as the conduit,
|
|
* and otherwise we will use HVC (for backwards compatibility and
|
|
* because if we're using KVM then we must use HVC).
|
|
*/
|
|
if (vms->secure && firmware_loaded) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
|
|
} else if (vms->virt) {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
|
|
} else {
|
|
vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
|
|
}
|
|
|
|
/*
|
|
* The maximum number of CPUs depends on the GIC version, or on how
|
|
* many redistributors we can fit into the memory map (which in turn
|
|
* depends on whether this is a GICv3 or v4).
|
|
*/
|
|
if (vms->gic_version == VIRT_GIC_VERSION_2) {
|
|
virt_max_cpus = GIC_NCPU;
|
|
} else {
|
|
virt_max_cpus = virt_redist_capacity(vms, VIRT_GIC_REDIST);
|
|
if (vms->highmem_redists) {
|
|
virt_max_cpus += virt_redist_capacity(vms, VIRT_HIGH_GIC_REDIST2);
|
|
}
|
|
}
|
|
|
|
if (max_cpus > virt_max_cpus) {
|
|
error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
|
|
"supported by machine 'mach-virt' (%d)",
|
|
max_cpus, virt_max_cpus);
|
|
if (vms->gic_version != VIRT_GIC_VERSION_2 && !vms->highmem_redists) {
|
|
error_printf("Try 'highmem-redists=on' for more CPUs\n");
|
|
}
|
|
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->secure && (kvm_enabled() || hvf_enabled())) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"Security extensions (TrustZone) to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->virt && (kvm_enabled() || hvf_enabled())) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"Virtualization extensions to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
if (vms->mte && hvf_enabled()) {
|
|
error_report("mach-virt: %s does not support providing "
|
|
"MTE to the guest CPU",
|
|
current_accel_name());
|
|
exit(1);
|
|
}
|
|
|
|
create_fdt(vms);
|
|
|
|
assert(possible_cpus->len == max_cpus);
|
|
for (n = 0; n < possible_cpus->len; n++) {
|
|
Object *cpuobj;
|
|
CPUState *cs;
|
|
|
|
if (n >= smp_cpus) {
|
|
break;
|
|
}
|
|
|
|
cpuobj = object_new(possible_cpus->cpus[n].type);
|
|
object_property_set_int(cpuobj, "mp-affinity",
|
|
possible_cpus->cpus[n].arch_id, NULL);
|
|
|
|
cs = CPU(cpuobj);
|
|
cs->cpu_index = n;
|
|
|
|
numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
|
|
&error_fatal);
|
|
|
|
aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
|
|
|
|
if (!vms->secure) {
|
|
object_property_set_bool(cpuobj, "has_el3", false, NULL);
|
|
}
|
|
|
|
if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
|
|
object_property_set_bool(cpuobj, "has_el2", false, NULL);
|
|
}
|
|
|
|
if (vmc->kvm_no_adjvtime &&
|
|
object_property_find(cpuobj, "kvm-no-adjvtime")) {
|
|
object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
|
|
}
|
|
|
|
if (vmc->no_kvm_steal_time &&
|
|
object_property_find(cpuobj, "kvm-steal-time")) {
|
|
object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
|
|
}
|
|
|
|
if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
|
|
object_property_set_bool(cpuobj, "pmu", false, NULL);
|
|
}
|
|
|
|
if (vmc->no_tcg_lpa2 && object_property_find(cpuobj, "lpa2")) {
|
|
object_property_set_bool(cpuobj, "lpa2", false, NULL);
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar")) {
|
|
object_property_set_int(cpuobj, "reset-cbar",
|
|
vms->memmap[VIRT_CPUPERIPHS].base,
|
|
&error_abort);
|
|
}
|
|
|
|
object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
|
|
&error_abort);
|
|
if (vms->secure) {
|
|
object_property_set_link(cpuobj, "secure-memory",
|
|
OBJECT(secure_sysmem), &error_abort);
|
|
}
|
|
|
|
if (vms->mte) {
|
|
if (tcg_enabled()) {
|
|
/* Create the memory region only once, but link to all cpus. */
|
|
if (!tag_sysmem) {
|
|
/*
|
|
* The property exists only if MemTag is supported.
|
|
* If it is, we must allocate the ram to back that up.
|
|
*/
|
|
if (!object_property_find(cpuobj, "tag-memory")) {
|
|
error_report("MTE requested, but not supported "
|
|
"by the guest CPU");
|
|
exit(1);
|
|
}
|
|
|
|
tag_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(tag_sysmem, OBJECT(machine),
|
|
"tag-memory", UINT64_MAX / 32);
|
|
|
|
if (vms->secure) {
|
|
secure_tag_sysmem = g_new(MemoryRegion, 1);
|
|
memory_region_init(secure_tag_sysmem, OBJECT(machine),
|
|
"secure-tag-memory",
|
|
UINT64_MAX / 32);
|
|
|
|
/* As with ram, secure-tag takes precedence over tag. */
|
|
memory_region_add_subregion_overlap(secure_tag_sysmem,
|
|
0, tag_sysmem, -1);
|
|
}
|
|
}
|
|
|
|
object_property_set_link(cpuobj, "tag-memory",
|
|
OBJECT(tag_sysmem), &error_abort);
|
|
if (vms->secure) {
|
|
object_property_set_link(cpuobj, "secure-tag-memory",
|
|
OBJECT(secure_tag_sysmem),
|
|
&error_abort);
|
|
}
|
|
} else if (kvm_enabled()) {
|
|
if (!kvm_arm_mte_supported()) {
|
|
error_report("MTE requested, but not supported by KVM");
|
|
exit(1);
|
|
}
|
|
kvm_arm_enable_mte(cpuobj, &error_abort);
|
|
} else {
|
|
error_report("MTE requested, but not supported ");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
|
|
object_unref(cpuobj);
|
|
}
|
|
|
|
/* Now we've created the CPUs we can see if they have the hypvirt timer */
|
|
vms->ns_el2_virt_timer_irq = ns_el2_virt_timer_present() &&
|
|
!vmc->no_ns_el2_virt_timer_irq;
|
|
|
|
fdt_add_timer_nodes(vms);
|
|
fdt_add_cpu_nodes(vms);
|
|
|
|
memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
|
|
machine->ram);
|
|
|
|
virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
|
|
|
|
create_gic(vms, sysmem);
|
|
|
|
virt_cpu_post_init(vms, sysmem);
|
|
|
|
fdt_add_pmu_nodes(vms);
|
|
|
|
/*
|
|
* The first UART always exists. If the security extensions are
|
|
* enabled, the second UART also always exists. Otherwise, it only exists
|
|
* if a backend is configured explicitly via '-serial <backend>'.
|
|
* This avoids potentially breaking existing user setups that expect
|
|
* only one NonSecure UART to be present (for instance, older EDK2
|
|
* binaries).
|
|
*
|
|
* The nodes end up in the DTB in reverse order of creation, so we must
|
|
* create UART0 last to ensure it appears as the first node in the DTB,
|
|
* for compatibility with guest software that just iterates through the
|
|
* DTB to find the first UART, as older versions of EDK2 do.
|
|
* DTB readers that follow the spec, as Linux does, should honour the
|
|
* aliases node information and /chosen/stdout-path regardless of
|
|
* the order that nodes appear in the DTB.
|
|
*
|
|
* For similar back-compatibility reasons, if UART1 is the secure UART
|
|
* we create it second (and so it appears first in the DTB), because
|
|
* that's what QEMU has always done.
|
|
*/
|
|
if (!vms->secure) {
|
|
Chardev *serial1 = serial_hd(1);
|
|
|
|
if (serial1) {
|
|
vms->second_ns_uart_present = true;
|
|
create_uart(vms, VIRT_UART1, sysmem, serial1, false);
|
|
}
|
|
}
|
|
create_uart(vms, VIRT_UART0, sysmem, serial_hd(0), false);
|
|
if (vms->secure) {
|
|
create_uart(vms, VIRT_UART1, secure_sysmem, serial_hd(1), true);
|
|
}
|
|
|
|
if (vms->secure) {
|
|
create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
|
|
}
|
|
|
|
if (tag_sysmem) {
|
|
create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
|
|
machine->ram_size, "mach-virt.tag");
|
|
}
|
|
|
|
vms->highmem_ecam &= (!firmware_loaded || aarch64);
|
|
|
|
create_rtc(vms);
|
|
|
|
create_pcie(vms);
|
|
|
|
if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
|
|
vms->acpi_dev = create_acpi_ged(vms);
|
|
} else {
|
|
create_gpio_devices(vms, VIRT_GPIO, sysmem);
|
|
}
|
|
|
|
if (vms->secure && !vmc->no_secure_gpio) {
|
|
create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
|
|
}
|
|
|
|
/* connect powerdown request */
|
|
vms->powerdown_notifier.notify = virt_powerdown_req;
|
|
qemu_register_powerdown_notifier(&vms->powerdown_notifier);
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
create_virtio_devices(vms);
|
|
|
|
vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
|
|
rom_set_fw(vms->fw_cfg);
|
|
|
|
create_platform_bus(vms);
|
|
|
|
if (machine->nvdimms_state->is_enabled) {
|
|
const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
|
|
.space_id = AML_AS_SYSTEM_MEMORY,
|
|
.address = vms->memmap[VIRT_NVDIMM_ACPI].base,
|
|
.bit_width = NVDIMM_ACPI_IO_LEN << 3
|
|
};
|
|
|
|
nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
|
|
arm_virt_nvdimm_acpi_dsmio,
|
|
vms->fw_cfg, OBJECT(vms));
|
|
}
|
|
|
|
vms->bootinfo.ram_size = machine->ram_size;
|
|
vms->bootinfo.board_id = -1;
|
|
vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
|
|
vms->bootinfo.get_dtb = machvirt_dtb;
|
|
vms->bootinfo.skip_dtb_autoload = true;
|
|
vms->bootinfo.firmware_loaded = firmware_loaded;
|
|
vms->bootinfo.psci_conduit = vms->psci_conduit;
|
|
arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
|
|
|
|
vms->machine_done.notify = virt_machine_done;
|
|
qemu_add_machine_init_done_notifier(&vms->machine_done);
|
|
}
|
|
|
|
static bool virt_get_secure(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->secure;
|
|
}
|
|
|
|
static void virt_set_secure(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->secure = value;
|
|
}
|
|
|
|
static bool virt_get_virt(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->virt;
|
|
}
|
|
|
|
static void virt_set_virt(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->virt = value;
|
|
}
|
|
|
|
static bool virt_get_highmem(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem;
|
|
}
|
|
|
|
static void virt_set_highmem(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem = value;
|
|
}
|
|
|
|
static bool virt_get_compact_highmem(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_compact;
|
|
}
|
|
|
|
static void virt_set_compact_highmem(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_compact = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_redists(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_redists;
|
|
}
|
|
|
|
static void virt_set_highmem_redists(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_redists = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_ecam(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_ecam;
|
|
}
|
|
|
|
static void virt_set_highmem_ecam(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_ecam = value;
|
|
}
|
|
|
|
static bool virt_get_highmem_mmio(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->highmem_mmio;
|
|
}
|
|
|
|
static void virt_set_highmem_mmio(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->highmem_mmio = value;
|
|
}
|
|
|
|
|
|
static bool virt_get_its(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->its;
|
|
}
|
|
|
|
static void virt_set_its(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->its = value;
|
|
}
|
|
|
|
static bool virt_get_dtb_randomness(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->dtb_randomness;
|
|
}
|
|
|
|
static void virt_set_dtb_randomness(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->dtb_randomness = value;
|
|
}
|
|
|
|
static char *virt_get_oem_id(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return g_strdup(vms->oem_id);
|
|
}
|
|
|
|
static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
size_t len = strlen(value);
|
|
|
|
if (len > 6) {
|
|
error_setg(errp,
|
|
"User specified oem-id value is bigger than 6 bytes in size");
|
|
return;
|
|
}
|
|
|
|
strncpy(vms->oem_id, value, 6);
|
|
}
|
|
|
|
static char *virt_get_oem_table_id(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return g_strdup(vms->oem_table_id);
|
|
}
|
|
|
|
static void virt_set_oem_table_id(Object *obj, const char *value,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
size_t len = strlen(value);
|
|
|
|
if (len > 8) {
|
|
error_setg(errp,
|
|
"User specified oem-table-id value is bigger than 8 bytes in size");
|
|
return;
|
|
}
|
|
strncpy(vms->oem_table_id, value, 8);
|
|
}
|
|
|
|
|
|
bool virt_is_acpi_enabled(VirtMachineState *vms)
|
|
{
|
|
if (vms->acpi == ON_OFF_AUTO_OFF) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
OnOffAuto acpi = vms->acpi;
|
|
|
|
visit_type_OnOffAuto(v, name, &acpi, errp);
|
|
}
|
|
|
|
static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
visit_type_OnOffAuto(v, name, &vms->acpi, errp);
|
|
}
|
|
|
|
static bool virt_get_ras(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->ras;
|
|
}
|
|
|
|
static void virt_set_ras(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->ras = value;
|
|
}
|
|
|
|
static bool virt_get_mte(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->mte;
|
|
}
|
|
|
|
static void virt_set_mte(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->mte = value;
|
|
}
|
|
|
|
static char *virt_get_gic_version(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
const char *val;
|
|
|
|
switch (vms->gic_version) {
|
|
case VIRT_GIC_VERSION_4:
|
|
val = "4";
|
|
break;
|
|
case VIRT_GIC_VERSION_3:
|
|
val = "3";
|
|
break;
|
|
default:
|
|
val = "2";
|
|
break;
|
|
}
|
|
return g_strdup(val);
|
|
}
|
|
|
|
static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
if (!strcmp(value, "4")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_4;
|
|
} else if (!strcmp(value, "3")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_3;
|
|
} else if (!strcmp(value, "2")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_2;
|
|
} else if (!strcmp(value, "host")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
|
|
} else if (!strcmp(value, "max")) {
|
|
vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
|
|
} else {
|
|
error_setg(errp, "Invalid gic-version value");
|
|
error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
|
|
}
|
|
}
|
|
|
|
static char *virt_get_iommu(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
switch (vms->iommu) {
|
|
case VIRT_IOMMU_NONE:
|
|
return g_strdup("none");
|
|
case VIRT_IOMMU_SMMUV3:
|
|
return g_strdup("smmuv3");
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
static void virt_set_iommu(Object *obj, const char *value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
if (!strcmp(value, "smmuv3")) {
|
|
vms->iommu = VIRT_IOMMU_SMMUV3;
|
|
} else if (!strcmp(value, "none")) {
|
|
vms->iommu = VIRT_IOMMU_NONE;
|
|
} else {
|
|
error_setg(errp, "Invalid iommu value");
|
|
error_append_hint(errp, "Valid values are none, smmuv3.\n");
|
|
}
|
|
}
|
|
|
|
static bool virt_get_default_bus_bypass_iommu(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->default_bus_bypass_iommu;
|
|
}
|
|
|
|
static void virt_set_default_bus_bypass_iommu(Object *obj, bool value,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->default_bus_bypass_iommu = value;
|
|
}
|
|
|
|
static CpuInstanceProperties
|
|
virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
|
|
|
|
assert(cpu_index < possible_cpus->len);
|
|
return possible_cpus->cpus[cpu_index].props;
|
|
}
|
|
|
|
static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
|
|
{
|
|
int64_t socket_id = ms->possible_cpus->cpus[idx].props.socket_id;
|
|
|
|
return socket_id % ms->numa_state->num_nodes;
|
|
}
|
|
|
|
static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
|
|
{
|
|
int n;
|
|
unsigned int max_cpus = ms->smp.max_cpus;
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
|
|
if (ms->possible_cpus) {
|
|
assert(ms->possible_cpus->len == max_cpus);
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
|
|
sizeof(CPUArchId) * max_cpus);
|
|
ms->possible_cpus->len = max_cpus;
|
|
for (n = 0; n < ms->possible_cpus->len; n++) {
|
|
ms->possible_cpus->cpus[n].type = ms->cpu_type;
|
|
ms->possible_cpus->cpus[n].arch_id =
|
|
virt_cpu_mp_affinity(vms, n);
|
|
|
|
assert(!mc->smp_props.dies_supported);
|
|
ms->possible_cpus->cpus[n].props.has_socket_id = true;
|
|
ms->possible_cpus->cpus[n].props.socket_id =
|
|
n / (ms->smp.clusters * ms->smp.cores * ms->smp.threads);
|
|
ms->possible_cpus->cpus[n].props.has_cluster_id = true;
|
|
ms->possible_cpus->cpus[n].props.cluster_id =
|
|
(n / (ms->smp.cores * ms->smp.threads)) % ms->smp.clusters;
|
|
ms->possible_cpus->cpus[n].props.has_core_id = true;
|
|
ms->possible_cpus->cpus[n].props.core_id =
|
|
(n / ms->smp.threads) % ms->smp.cores;
|
|
ms->possible_cpus->cpus[n].props.has_thread_id = true;
|
|
ms->possible_cpus->cpus[n].props.thread_id =
|
|
n % ms->smp.threads;
|
|
}
|
|
return ms->possible_cpus;
|
|
}
|
|
|
|
static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
|
|
Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
const MachineState *ms = MACHINE(hotplug_dev);
|
|
const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
|
|
if (!vms->acpi_dev) {
|
|
error_setg(errp,
|
|
"memory hotplug is not enabled: missing acpi-ged device");
|
|
return;
|
|
}
|
|
|
|
if (vms->mte) {
|
|
error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
|
|
return;
|
|
}
|
|
|
|
if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
|
|
error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
|
|
return;
|
|
}
|
|
|
|
pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), errp);
|
|
}
|
|
|
|
static void virt_memory_plug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
MachineState *ms = MACHINE(hotplug_dev);
|
|
bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
|
|
|
|
pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
|
|
|
|
if (is_nvdimm) {
|
|
nvdimm_plug(ms->nvdimms_state);
|
|
}
|
|
|
|
hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
|
|
dev, &error_abort);
|
|
}
|
|
|
|
static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_memory_pre_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_pre_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
hwaddr db_start = 0, db_end = 0;
|
|
QList *reserved_regions;
|
|
char *resv_prop_str;
|
|
|
|
if (vms->iommu != VIRT_IOMMU_NONE) {
|
|
error_setg(errp, "virt machine does not support multiple IOMMUs");
|
|
return;
|
|
}
|
|
|
|
switch (vms->msi_controller) {
|
|
case VIRT_MSI_CTRL_NONE:
|
|
return;
|
|
case VIRT_MSI_CTRL_ITS:
|
|
/* GITS_TRANSLATER page */
|
|
db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
|
|
db_end = base_memmap[VIRT_GIC_ITS].base +
|
|
base_memmap[VIRT_GIC_ITS].size - 1;
|
|
break;
|
|
case VIRT_MSI_CTRL_GICV2M:
|
|
/* MSI_SETSPI_NS page */
|
|
db_start = base_memmap[VIRT_GIC_V2M].base;
|
|
db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
|
|
break;
|
|
}
|
|
resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
|
|
db_start, db_end,
|
|
VIRTIO_IOMMU_RESV_MEM_T_MSI);
|
|
|
|
reserved_regions = qlist_new();
|
|
qlist_append_str(reserved_regions, resv_prop_str);
|
|
qdev_prop_set_array(dev, "reserved-regions", reserved_regions);
|
|
g_free(resv_prop_str);
|
|
}
|
|
}
|
|
|
|
static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (vms->platform_bus_dev) {
|
|
MachineClass *mc = MACHINE_GET_CLASS(vms);
|
|
|
|
if (device_is_dynamic_sysbus(mc, dev)) {
|
|
platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
|
|
SYS_BUS_DEVICE(dev));
|
|
}
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_memory_plug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_plug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
PCIDevice *pdev = PCI_DEVICE(dev);
|
|
|
|
vms->iommu = VIRT_IOMMU_VIRTIO;
|
|
vms->virtio_iommu_bdf = pci_get_bdf(pdev);
|
|
create_virtio_iommu_dt_bindings(vms);
|
|
}
|
|
}
|
|
|
|
static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
|
|
if (!vms->acpi_dev) {
|
|
error_setg(errp,
|
|
"memory hotplug is not enabled: missing acpi-ged device");
|
|
return;
|
|
}
|
|
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
|
|
error_setg(errp, "nvdimm device hot unplug is not supported yet.");
|
|
return;
|
|
}
|
|
|
|
hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
|
|
errp);
|
|
}
|
|
|
|
static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
|
|
Error *local_err = NULL;
|
|
|
|
hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
|
|
if (local_err) {
|
|
goto out;
|
|
}
|
|
|
|
pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
|
|
qdev_unrealize(dev);
|
|
|
|
out:
|
|
error_propagate(errp, local_err);
|
|
}
|
|
|
|
static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_dimm_unplug_request(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_unplug_request(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev),
|
|
errp);
|
|
} else {
|
|
error_setg(errp, "device unplug request for unsupported device"
|
|
" type: %s", object_get_typename(OBJECT(dev)));
|
|
}
|
|
}
|
|
|
|
static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
|
|
DeviceState *dev, Error **errp)
|
|
{
|
|
if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
|
|
virt_dimm_unplug(hotplug_dev, dev, errp);
|
|
} else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI)) {
|
|
virtio_md_pci_unplug(VIRTIO_MD_PCI(dev), MACHINE(hotplug_dev), errp);
|
|
} else {
|
|
error_setg(errp, "virt: device unplug for unsupported device"
|
|
" type: %s", object_get_typename(OBJECT(dev)));
|
|
}
|
|
}
|
|
|
|
static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
|
|
DeviceState *dev)
|
|
{
|
|
MachineClass *mc = MACHINE_GET_CLASS(machine);
|
|
|
|
if (device_is_dynamic_sysbus(mc, dev) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_MD_PCI) ||
|
|
object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
|
|
return HOTPLUG_HANDLER(machine);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* for arm64 kvm_type [7-0] encodes the requested number of bits
|
|
* in the IPA address space
|
|
*/
|
|
static int virt_kvm_type(MachineState *ms, const char *type_str)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
int max_vm_pa_size, requested_pa_size;
|
|
bool fixed_ipa;
|
|
|
|
max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms, &fixed_ipa);
|
|
|
|
/* we freeze the memory map to compute the highest gpa */
|
|
virt_set_memmap(vms, max_vm_pa_size);
|
|
|
|
requested_pa_size = 64 - clz64(vms->highest_gpa);
|
|
|
|
/*
|
|
* KVM requires the IPA size to be at least 32 bits.
|
|
*/
|
|
if (requested_pa_size < 32) {
|
|
requested_pa_size = 32;
|
|
}
|
|
|
|
if (requested_pa_size > max_vm_pa_size) {
|
|
error_report("-m and ,maxmem option values "
|
|
"require an IPA range (%d bits) larger than "
|
|
"the one supported by the host (%d bits)",
|
|
requested_pa_size, max_vm_pa_size);
|
|
return -1;
|
|
}
|
|
/*
|
|
* We return the requested PA log size, unless KVM only supports
|
|
* the implicit legacy 40b IPA setting, in which case the kvm_type
|
|
* must be 0.
|
|
*/
|
|
return fixed_ipa ? 0 : requested_pa_size;
|
|
}
|
|
|
|
static int virt_hvf_get_physical_address_range(MachineState *ms)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(ms);
|
|
|
|
int default_ipa_size = hvf_arm_get_default_ipa_bit_size();
|
|
int max_ipa_size = hvf_arm_get_max_ipa_bit_size();
|
|
|
|
/* We freeze the memory map to compute the highest gpa */
|
|
virt_set_memmap(vms, max_ipa_size);
|
|
|
|
int requested_ipa_size = 64 - clz64(vms->highest_gpa);
|
|
|
|
/*
|
|
* If we're <= the default IPA size just use the default.
|
|
* If we're above the default but below the maximum, round up to
|
|
* the maximum. hvf_arm_get_max_ipa_bit_size() conveniently only
|
|
* returns values that are valid ARM PARange values.
|
|
*/
|
|
if (requested_ipa_size <= default_ipa_size) {
|
|
requested_ipa_size = default_ipa_size;
|
|
} else if (requested_ipa_size <= max_ipa_size) {
|
|
requested_ipa_size = max_ipa_size;
|
|
} else {
|
|
error_report("-m and ,maxmem option values "
|
|
"require an IPA range (%d bits) larger than "
|
|
"the one supported by the host (%d bits)",
|
|
requested_ipa_size, max_ipa_size);
|
|
return -1;
|
|
}
|
|
|
|
return requested_ipa_size;
|
|
}
|
|
|
|
static void virt_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
|
|
static const char * const valid_cpu_types[] = {
|
|
#ifdef CONFIG_TCG
|
|
ARM_CPU_TYPE_NAME("cortex-a7"),
|
|
ARM_CPU_TYPE_NAME("cortex-a15"),
|
|
#ifdef TARGET_AARCH64
|
|
ARM_CPU_TYPE_NAME("cortex-a35"),
|
|
ARM_CPU_TYPE_NAME("cortex-a55"),
|
|
ARM_CPU_TYPE_NAME("cortex-a72"),
|
|
ARM_CPU_TYPE_NAME("cortex-a76"),
|
|
ARM_CPU_TYPE_NAME("cortex-a710"),
|
|
ARM_CPU_TYPE_NAME("a64fx"),
|
|
ARM_CPU_TYPE_NAME("neoverse-n1"),
|
|
ARM_CPU_TYPE_NAME("neoverse-v1"),
|
|
ARM_CPU_TYPE_NAME("neoverse-n2"),
|
|
#endif /* TARGET_AARCH64 */
|
|
#endif /* CONFIG_TCG */
|
|
#ifdef TARGET_AARCH64
|
|
ARM_CPU_TYPE_NAME("cortex-a53"),
|
|
ARM_CPU_TYPE_NAME("cortex-a57"),
|
|
#if defined(CONFIG_KVM) || defined(CONFIG_HVF)
|
|
ARM_CPU_TYPE_NAME("host"),
|
|
#endif /* CONFIG_KVM || CONFIG_HVF */
|
|
#endif /* TARGET_AARCH64 */
|
|
ARM_CPU_TYPE_NAME("max"),
|
|
NULL
|
|
};
|
|
|
|
mc->init = machvirt_init;
|
|
/* Start with max_cpus set to 512, which is the maximum supported by KVM.
|
|
* The value may be reduced later when we have more information about the
|
|
* configuration of the particular instance.
|
|
*/
|
|
mc->max_cpus = 512;
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
|
|
#ifdef CONFIG_TPM
|
|
machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
|
|
#endif
|
|
mc->block_default_type = IF_VIRTIO;
|
|
mc->no_cdrom = 1;
|
|
mc->pci_allow_0_address = true;
|
|
/* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
|
|
mc->minimum_page_bits = 12;
|
|
mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
|
|
mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
|
|
#ifdef CONFIG_TCG
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
|
|
#else
|
|
mc->default_cpu_type = ARM_CPU_TYPE_NAME("max");
|
|
#endif
|
|
mc->valid_cpu_types = valid_cpu_types;
|
|
mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
|
|
mc->kvm_type = virt_kvm_type;
|
|
mc->hvf_get_physical_address_range = virt_hvf_get_physical_address_range;
|
|
assert(!mc->get_hotplug_handler);
|
|
mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
|
|
hc->pre_plug = virt_machine_device_pre_plug_cb;
|
|
hc->plug = virt_machine_device_plug_cb;
|
|
hc->unplug_request = virt_machine_device_unplug_request_cb;
|
|
hc->unplug = virt_machine_device_unplug_cb;
|
|
mc->nvdimm_supported = true;
|
|
mc->smp_props.clusters_supported = true;
|
|
mc->auto_enable_numa_with_memhp = true;
|
|
mc->auto_enable_numa_with_memdev = true;
|
|
/* platform instead of architectural choice */
|
|
mc->cpu_cluster_has_numa_boundary = true;
|
|
mc->default_ram_id = "mach-virt.ram";
|
|
mc->default_nic = "virtio-net-pci";
|
|
|
|
object_class_property_add(oc, "acpi", "OnOffAuto",
|
|
virt_get_acpi, virt_set_acpi,
|
|
NULL, NULL);
|
|
object_class_property_set_description(oc, "acpi",
|
|
"Enable ACPI");
|
|
object_class_property_add_bool(oc, "secure", virt_get_secure,
|
|
virt_set_secure);
|
|
object_class_property_set_description(oc, "secure",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Security Extensions (TrustZone)");
|
|
|
|
object_class_property_add_bool(oc, "virtualization", virt_get_virt,
|
|
virt_set_virt);
|
|
object_class_property_set_description(oc, "virtualization",
|
|
"Set on/off to enable/disable emulating a "
|
|
"guest CPU which implements the ARM "
|
|
"Virtualization Extensions");
|
|
|
|
object_class_property_add_bool(oc, "highmem", virt_get_highmem,
|
|
virt_set_highmem);
|
|
object_class_property_set_description(oc, "highmem",
|
|
"Set on/off to enable/disable using "
|
|
"physical address space above 32 bits");
|
|
|
|
object_class_property_add_bool(oc, "compact-highmem",
|
|
virt_get_compact_highmem,
|
|
virt_set_compact_highmem);
|
|
object_class_property_set_description(oc, "compact-highmem",
|
|
"Set on/off to enable/disable compact "
|
|
"layout for high memory regions");
|
|
|
|
object_class_property_add_bool(oc, "highmem-redists",
|
|
virt_get_highmem_redists,
|
|
virt_set_highmem_redists);
|
|
object_class_property_set_description(oc, "highmem-redists",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for GICv3 or GICv4 "
|
|
"redistributor");
|
|
|
|
object_class_property_add_bool(oc, "highmem-ecam",
|
|
virt_get_highmem_ecam,
|
|
virt_set_highmem_ecam);
|
|
object_class_property_set_description(oc, "highmem-ecam",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for PCI ECAM");
|
|
|
|
object_class_property_add_bool(oc, "highmem-mmio",
|
|
virt_get_highmem_mmio,
|
|
virt_set_highmem_mmio);
|
|
object_class_property_set_description(oc, "highmem-mmio",
|
|
"Set on/off to enable/disable high "
|
|
"memory region for PCI MMIO");
|
|
|
|
object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
|
|
virt_set_gic_version);
|
|
object_class_property_set_description(oc, "gic-version",
|
|
"Set GIC version. "
|
|
"Valid values are 2, 3, 4, host and max");
|
|
|
|
object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
|
|
object_class_property_set_description(oc, "iommu",
|
|
"Set the IOMMU type. "
|
|
"Valid values are none and smmuv3");
|
|
|
|
object_class_property_add_bool(oc, "default-bus-bypass-iommu",
|
|
virt_get_default_bus_bypass_iommu,
|
|
virt_set_default_bus_bypass_iommu);
|
|
object_class_property_set_description(oc, "default-bus-bypass-iommu",
|
|
"Set on/off to enable/disable "
|
|
"bypass_iommu for default root bus");
|
|
|
|
object_class_property_add_bool(oc, "ras", virt_get_ras,
|
|
virt_set_ras);
|
|
object_class_property_set_description(oc, "ras",
|
|
"Set on/off to enable/disable reporting host memory errors "
|
|
"to a KVM guest using ACPI and guest external abort exceptions");
|
|
|
|
object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
|
|
object_class_property_set_description(oc, "mte",
|
|
"Set on/off to enable/disable emulating a "
|
|
"guest CPU which implements the ARM "
|
|
"Memory Tagging Extension");
|
|
|
|
object_class_property_add_bool(oc, "its", virt_get_its,
|
|
virt_set_its);
|
|
object_class_property_set_description(oc, "its",
|
|
"Set on/off to enable/disable "
|
|
"ITS instantiation");
|
|
|
|
object_class_property_add_bool(oc, "dtb-randomness",
|
|
virt_get_dtb_randomness,
|
|
virt_set_dtb_randomness);
|
|
object_class_property_set_description(oc, "dtb-randomness",
|
|
"Set off to disable passing random or "
|
|
"non-deterministic dtb nodes to guest");
|
|
|
|
object_class_property_add_bool(oc, "dtb-kaslr-seed",
|
|
virt_get_dtb_randomness,
|
|
virt_set_dtb_randomness);
|
|
object_class_property_set_description(oc, "dtb-kaslr-seed",
|
|
"Deprecated synonym of dtb-randomness");
|
|
|
|
object_class_property_add_str(oc, "x-oem-id",
|
|
virt_get_oem_id,
|
|
virt_set_oem_id);
|
|
object_class_property_set_description(oc, "x-oem-id",
|
|
"Override the default value of field OEMID "
|
|
"in ACPI table header."
|
|
"The string may be up to 6 bytes in size");
|
|
|
|
|
|
object_class_property_add_str(oc, "x-oem-table-id",
|
|
virt_get_oem_table_id,
|
|
virt_set_oem_table_id);
|
|
object_class_property_set_description(oc, "x-oem-table-id",
|
|
"Override the default value of field OEM Table ID "
|
|
"in ACPI table header."
|
|
"The string may be up to 8 bytes in size");
|
|
|
|
}
|
|
|
|
static void virt_instance_init(Object *obj)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
|
|
|
|
/* EL3 is disabled by default on virt: this makes us consistent
|
|
* between KVM and TCG for this board, and it also allows us to
|
|
* boot UEFI blobs which assume no TrustZone support.
|
|
*/
|
|
vms->secure = false;
|
|
|
|
/* EL2 is also disabled by default, for similar reasons */
|
|
vms->virt = false;
|
|
|
|
/* High memory is enabled by default */
|
|
vms->highmem = true;
|
|
vms->highmem_compact = !vmc->no_highmem_compact;
|
|
vms->gic_version = VIRT_GIC_VERSION_NOSEL;
|
|
|
|
vms->highmem_ecam = !vmc->no_highmem_ecam;
|
|
vms->highmem_mmio = true;
|
|
vms->highmem_redists = true;
|
|
|
|
if (vmc->no_its) {
|
|
vms->its = false;
|
|
} else {
|
|
/* Default allows ITS instantiation */
|
|
vms->its = true;
|
|
|
|
if (vmc->no_tcg_its) {
|
|
vms->tcg_its = false;
|
|
} else {
|
|
vms->tcg_its = true;
|
|
}
|
|
}
|
|
|
|
/* Default disallows iommu instantiation */
|
|
vms->iommu = VIRT_IOMMU_NONE;
|
|
|
|
/* The default root bus is attached to iommu by default */
|
|
vms->default_bus_bypass_iommu = false;
|
|
|
|
/* Default disallows RAS instantiation */
|
|
vms->ras = false;
|
|
|
|
/* MTE is disabled by default. */
|
|
vms->mte = false;
|
|
|
|
/* Supply kaslr-seed and rng-seed by default */
|
|
vms->dtb_randomness = true;
|
|
|
|
vms->irqmap = a15irqmap;
|
|
|
|
virt_flash_create(vms);
|
|
|
|
vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
|
|
vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
|
|
}
|
|
|
|
static const TypeInfo virt_machine_info = {
|
|
.name = TYPE_VIRT_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.abstract = true,
|
|
.instance_size = sizeof(VirtMachineState),
|
|
.class_size = sizeof(VirtMachineClass),
|
|
.class_init = virt_machine_class_init,
|
|
.instance_init = virt_instance_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ TYPE_HOTPLUG_HANDLER },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static void machvirt_machine_init(void)
|
|
{
|
|
type_register_static(&virt_machine_info);
|
|
}
|
|
type_init(machvirt_machine_init);
|
|
|
|
static void virt_machine_9_2_options(MachineClass *mc)
|
|
{
|
|
}
|
|
DEFINE_VIRT_MACHINE_AS_LATEST(9, 2)
|
|
|
|
static void virt_machine_9_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_9_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len);
|
|
/* 9.1 and earlier have only a stage-1 SMMU, not a nested s1+2 one */
|
|
vmc->no_nested_smmu = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(9, 1)
|
|
|
|
static void virt_machine_9_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_9_1_options(mc);
|
|
mc->smbios_memory_device_size = 16 * GiB;
|
|
compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(9, 0)
|
|
|
|
static void virt_machine_8_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_9_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
|
|
/*
|
|
* Don't expose NS_EL2_VIRT timer IRQ in DTB on ACPI on 8.2 and
|
|
* earlier machines. (Exposing it tickles a bug in older EDK2
|
|
* guest BIOS binaries.)
|
|
*/
|
|
vmc->no_ns_el2_virt_timer_irq = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 2)
|
|
|
|
static void virt_machine_8_1_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 1)
|
|
|
|
static void virt_machine_8_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(8, 0)
|
|
|
|
static void virt_machine_7_2_options(MachineClass *mc)
|
|
{
|
|
virt_machine_8_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 2)
|
|
|
|
static void virt_machine_7_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_7_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
|
|
/* Compact layout for high memory regions was introduced with 7.2 */
|
|
vmc->no_highmem_compact = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 1)
|
|
|
|
static void virt_machine_7_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_7_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(7, 0)
|
|
|
|
static void virt_machine_6_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_7_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
|
|
vmc->no_tcg_lpa2 = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 2)
|
|
|
|
static void virt_machine_6_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_6_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
|
|
mc->smp_props.prefer_sockets = true;
|
|
vmc->no_cpu_topology = true;
|
|
|
|
/* qemu ITS was introduced with 6.2 */
|
|
vmc->no_tcg_its = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 1)
|
|
|
|
static void virt_machine_6_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_6_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(6, 0)
|
|
|
|
static void virt_machine_5_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_6_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
|
|
vmc->no_secure_gpio = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 2)
|
|
|
|
static void virt_machine_5_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
|
|
vmc->no_kvm_steal_time = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 1)
|
|
|
|
static void virt_machine_5_0_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
|
|
mc->numa_mem_supported = true;
|
|
vmc->acpi_expose_flash = true;
|
|
mc->auto_enable_numa_with_memdev = false;
|
|
}
|
|
DEFINE_VIRT_MACHINE(5, 0)
|
|
|
|
static void virt_machine_4_2_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_5_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
|
|
vmc->kvm_no_adjvtime = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 2)
|
|
|
|
static void virt_machine_4_1_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_4_2_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
|
|
vmc->no_ged = true;
|
|
mc->auto_enable_numa_with_memhp = false;
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 1)
|
|
|
|
static void virt_machine_4_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_4_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(4, 0)
|
|
|
|
static void virt_machine_3_1_options(MachineClass *mc)
|
|
{
|
|
virt_machine_4_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(3, 1)
|
|
|
|
static void virt_machine_3_0_options(MachineClass *mc)
|
|
{
|
|
virt_machine_3_1_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(3, 0)
|
|
|
|
static void virt_machine_2_12_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_3_0_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
|
|
vmc->no_highmem_ecam = true;
|
|
mc->max_cpus = 255;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 12)
|
|
|
|
static void virt_machine_2_11_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_12_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
|
|
vmc->smbios_old_sys_ver = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 11)
|
|
|
|
static void virt_machine_2_10_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_11_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
|
|
/* before 2.11 we never faulted accesses to bad addresses */
|
|
mc->ignore_memory_transaction_failures = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 10)
|
|
|
|
static void virt_machine_2_9_options(MachineClass *mc)
|
|
{
|
|
virt_machine_2_10_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 9)
|
|
|
|
static void virt_machine_2_8_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_9_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
|
|
/* For 2.8 and earlier we falsely claimed in the DT that
|
|
* our timers were edge-triggered, not level-triggered.
|
|
*/
|
|
vmc->claim_edge_triggered_timers = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 8)
|
|
|
|
static void virt_machine_2_7_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_8_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
|
|
/* ITS was introduced with 2.8 */
|
|
vmc->no_its = true;
|
|
/* Stick with 1K pages for migration compatibility */
|
|
mc->minimum_page_bits = 0;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 7)
|
|
|
|
static void virt_machine_2_6_options(MachineClass *mc)
|
|
{
|
|
VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
|
|
|
|
virt_machine_2_7_options(mc);
|
|
compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
|
|
vmc->disallow_affinity_adjustment = true;
|
|
/* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
|
|
vmc->no_pmu = true;
|
|
}
|
|
DEFINE_VIRT_MACHINE(2, 6)
|