You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/arm/stellaris.c

1487 lines
46 KiB
C

/*
* Luminary Micro Stellaris peripherals
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/core/split-irq.h"
#include "hw/sysbus.h"
#include "hw/sd/sd.h"
#include "hw/ssi/ssi.h"
#include "hw/arm/boot.h"
#include "qemu/timer.h"
#include "hw/i2c/i2c.h"
#include "net/net.h"
#include "hw/boards.h"
#include "qemu/log.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/arm/armv7m.h"
#include "hw/char/pl011.h"
#include "hw/input/stellaris_gamepad.h"
#include "hw/irq.h"
#include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "migration/vmstate.h"
#include "hw/misc/unimp.h"
#include "hw/timer/stellaris-gptm.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"
#include "qapi/qmp/qlist.h"
#include "ui/input.h"
#define GPIO_A 0
#define GPIO_B 1
#define GPIO_C 2
#define GPIO_D 3
#define GPIO_E 4
#define GPIO_F 5
#define GPIO_G 6
#define BP_OLED_I2C 0x01
#define BP_OLED_SSI 0x02
#define BP_GAMEPAD 0x04
#define NUM_IRQ_LINES 64
#define NUM_PRIO_BITS 3
typedef const struct {
const char *name;
uint32_t did0;
uint32_t did1;
uint32_t dc0;
uint32_t dc1;
uint32_t dc2;
uint32_t dc3;
uint32_t dc4;
uint32_t peripherals;
} stellaris_board_info;
/* System controller. */
#define TYPE_STELLARIS_SYS "stellaris-sys"
OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)
struct ssys_state {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t pborctl;
uint32_t ldopctl;
uint32_t int_status;
uint32_t int_mask;
uint32_t resc;
uint32_t rcc;
uint32_t rcc2;
uint32_t rcgc[3];
uint32_t scgc[3];
uint32_t dcgc[3];
uint32_t clkvclr;
uint32_t ldoarst;
qemu_irq irq;
Clock *sysclk;
/* Properties (all read-only registers) */
uint32_t user0;
uint32_t user1;
uint32_t did0;
uint32_t did1;
uint32_t dc0;
uint32_t dc1;
uint32_t dc2;
uint32_t dc3;
uint32_t dc4;
};
static void ssys_update(ssys_state *s)
{
qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
}
static uint32_t pllcfg_sandstorm[16] = {
0x31c0, /* 1 Mhz */
0x1ae0, /* 1.8432 Mhz */
0x18c0, /* 2 Mhz */
0xd573, /* 2.4576 Mhz */
0x37a6, /* 3.57954 Mhz */
0x1ae2, /* 3.6864 Mhz */
0x0c40, /* 4 Mhz */
0x98bc, /* 4.906 Mhz */
0x935b, /* 4.9152 Mhz */
0x09c0, /* 5 Mhz */
0x4dee, /* 5.12 Mhz */
0x0c41, /* 6 Mhz */
0x75db, /* 6.144 Mhz */
0x1ae6, /* 7.3728 Mhz */
0x0600, /* 8 Mhz */
0x585b /* 8.192 Mhz */
};
static uint32_t pllcfg_fury[16] = {
0x3200, /* 1 Mhz */
0x1b20, /* 1.8432 Mhz */
0x1900, /* 2 Mhz */
0xf42b, /* 2.4576 Mhz */
0x37e3, /* 3.57954 Mhz */
0x1b21, /* 3.6864 Mhz */
0x0c80, /* 4 Mhz */
0x98ee, /* 4.906 Mhz */
0xd5b4, /* 4.9152 Mhz */
0x0a00, /* 5 Mhz */
0x4e27, /* 5.12 Mhz */
0x1902, /* 6 Mhz */
0xec1c, /* 6.144 Mhz */
0x1b23, /* 7.3728 Mhz */
0x0640, /* 8 Mhz */
0xb11c /* 8.192 Mhz */
};
#define DID0_VER_MASK 0x70000000
#define DID0_VER_0 0x00000000
#define DID0_VER_1 0x10000000
#define DID0_CLASS_MASK 0x00FF0000
#define DID0_CLASS_SANDSTORM 0x00000000
#define DID0_CLASS_FURY 0x00010000
static int ssys_board_class(const ssys_state *s)
{
uint32_t did0 = s->did0;
switch (did0 & DID0_VER_MASK) {
case DID0_VER_0:
return DID0_CLASS_SANDSTORM;
case DID0_VER_1:
switch (did0 & DID0_CLASS_MASK) {
case DID0_CLASS_SANDSTORM:
case DID0_CLASS_FURY:
return did0 & DID0_CLASS_MASK;
}
/* for unknown classes, fall through */
default:
/* This can only happen if the hardwired constant did0 value
* in this board's stellaris_board_info struct is wrong.
*/
g_assert_not_reached();
}
}
static uint64_t ssys_read(void *opaque, hwaddr offset,
unsigned size)
{
ssys_state *s = (ssys_state *)opaque;
switch (offset) {
case 0x000: /* DID0 */
return s->did0;
case 0x004: /* DID1 */
return s->did1;
case 0x008: /* DC0 */
return s->dc0;
case 0x010: /* DC1 */
return s->dc1;
case 0x014: /* DC2 */
return s->dc2;
case 0x018: /* DC3 */
return s->dc3;
case 0x01c: /* DC4 */
return s->dc4;
case 0x030: /* PBORCTL */
return s->pborctl;
case 0x034: /* LDOPCTL */
return s->ldopctl;
case 0x040: /* SRCR0 */
return 0;
case 0x044: /* SRCR1 */
return 0;
case 0x048: /* SRCR2 */
return 0;
case 0x050: /* RIS */
return s->int_status;
case 0x054: /* IMC */
return s->int_mask;
case 0x058: /* MISC */
return s->int_status & s->int_mask;
case 0x05c: /* RESC */
return s->resc;
case 0x060: /* RCC */
return s->rcc;
case 0x064: /* PLLCFG */
{
int xtal;
xtal = (s->rcc >> 6) & 0xf;
switch (ssys_board_class(s)) {
case DID0_CLASS_FURY:
return pllcfg_fury[xtal];
case DID0_CLASS_SANDSTORM:
return pllcfg_sandstorm[xtal];
default:
g_assert_not_reached();
}
}
case 0x070: /* RCC2 */
return s->rcc2;
case 0x100: /* RCGC0 */
return s->rcgc[0];
case 0x104: /* RCGC1 */
return s->rcgc[1];
case 0x108: /* RCGC2 */
return s->rcgc[2];
case 0x110: /* SCGC0 */
return s->scgc[0];
case 0x114: /* SCGC1 */
return s->scgc[1];
case 0x118: /* SCGC2 */
return s->scgc[2];
case 0x120: /* DCGC0 */
return s->dcgc[0];
case 0x124: /* DCGC1 */
return s->dcgc[1];
case 0x128: /* DCGC2 */
return s->dcgc[2];
case 0x150: /* CLKVCLR */
return s->clkvclr;
case 0x160: /* LDOARST */
return s->ldoarst;
case 0x1e0: /* USER0 */
return s->user0;
case 0x1e4: /* USER1 */
return s->user1;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSYS: read at bad offset 0x%x\n", (int)offset);
return 0;
}
}
static bool ssys_use_rcc2(ssys_state *s)
{
return (s->rcc2 >> 31) & 0x1;
}
/*
* Calculate the system clock period. We only want to propagate
* this change to the rest of the system if we're not being called
* from migration post-load.
*/
static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
{
int period_ns;
/*
* SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc. Input
* clock is 200MHz, which is a period of 5 ns. Dividing the clock
* frequency by X is the same as multiplying the period by X.
*/
if (ssys_use_rcc2(s)) {
period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
} else {
period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
}
clock_set_ns(s->sysclk, period_ns);
if (propagate_clock) {
clock_propagate(s->sysclk);
}
}
static void ssys_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
ssys_state *s = (ssys_state *)opaque;
switch (offset) {
case 0x030: /* PBORCTL */
s->pborctl = value & 0xffff;
break;
case 0x034: /* LDOPCTL */
s->ldopctl = value & 0x1f;
break;
case 0x040: /* SRCR0 */
case 0x044: /* SRCR1 */
case 0x048: /* SRCR2 */
qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
break;
case 0x054: /* IMC */
s->int_mask = value & 0x7f;
break;
case 0x058: /* MISC */
s->int_status &= ~value;
break;
case 0x05c: /* RESC */
s->resc = value & 0x3f;
break;
case 0x060: /* RCC */
if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
/* PLL enable. */
s->int_status |= (1 << 6);
}
s->rcc = value;
ssys_calculate_system_clock(s, true);
break;
case 0x070: /* RCC2 */
if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
break;
}
if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
/* PLL enable. */
s->int_status |= (1 << 6);
}
s->rcc2 = value;
ssys_calculate_system_clock(s, true);
break;
case 0x100: /* RCGC0 */
s->rcgc[0] = value;
break;
case 0x104: /* RCGC1 */
s->rcgc[1] = value;
break;
case 0x108: /* RCGC2 */
s->rcgc[2] = value;
break;
case 0x110: /* SCGC0 */
s->scgc[0] = value;
break;
case 0x114: /* SCGC1 */
s->scgc[1] = value;
break;
case 0x118: /* SCGC2 */
s->scgc[2] = value;
break;
case 0x120: /* DCGC0 */
s->dcgc[0] = value;
break;
case 0x124: /* DCGC1 */
s->dcgc[1] = value;
break;
case 0x128: /* DCGC2 */
s->dcgc[2] = value;
break;
case 0x150: /* CLKVCLR */
s->clkvclr = value;
break;
case 0x160: /* LDOARST */
s->ldoarst = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"SSYS: write at bad offset 0x%x\n", (int)offset);
}
ssys_update(s);
}
static const MemoryRegionOps ssys_ops = {
.read = ssys_read,
.write = ssys_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void stellaris_sys_reset_enter(Object *obj, ResetType type)
{
ssys_state *s = STELLARIS_SYS(obj);
s->pborctl = 0x7ffd;
s->rcc = 0x078e3ac0;
if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
s->rcc2 = 0;
} else {
s->rcc2 = 0x07802810;
}
s->rcgc[0] = 1;
s->scgc[0] = 1;
s->dcgc[0] = 1;
}
static void stellaris_sys_reset_hold(Object *obj, ResetType type)
{
ssys_state *s = STELLARIS_SYS(obj);
/* OK to propagate clocks from the hold phase */
ssys_calculate_system_clock(s, true);
}
static void stellaris_sys_reset_exit(Object *obj, ResetType type)
{
}
static int stellaris_sys_post_load(void *opaque, int version_id)
{
ssys_state *s = opaque;
ssys_calculate_system_clock(s, false);
return 0;
}
static const VMStateDescription vmstate_stellaris_sys = {
.name = "stellaris_sys",
.version_id = 2,
.minimum_version_id = 1,
.post_load = stellaris_sys_post_load,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(pborctl, ssys_state),
VMSTATE_UINT32(ldopctl, ssys_state),
VMSTATE_UINT32(int_mask, ssys_state),
VMSTATE_UINT32(int_status, ssys_state),
VMSTATE_UINT32(resc, ssys_state),
VMSTATE_UINT32(rcc, ssys_state),
VMSTATE_UINT32_V(rcc2, ssys_state, 2),
VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
VMSTATE_UINT32(clkvclr, ssys_state),
VMSTATE_UINT32(ldoarst, ssys_state),
/* No field for sysclk -- handled in post-load instead */
VMSTATE_END_OF_LIST()
}
};
static Property stellaris_sys_properties[] = {
DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
DEFINE_PROP_END_OF_LIST()
};
static void stellaris_sys_instance_init(Object *obj)
{
ssys_state *s = STELLARIS_SYS(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(s);
memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
}
/*
* I2C controller.
* ??? For now we only implement the master interface.
*/
#define TYPE_STELLARIS_I2C "stellaris-i2c"
OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)
struct stellaris_i2c_state {
SysBusDevice parent_obj;
I2CBus *bus;
qemu_irq irq;
MemoryRegion iomem;
uint32_t msa;
uint32_t mcs;
uint32_t mdr;
uint32_t mtpr;
uint32_t mimr;
uint32_t mris;
uint32_t mcr;
};
#define STELLARIS_I2C_MCS_BUSY 0x01
#define STELLARIS_I2C_MCS_ERROR 0x02
#define STELLARIS_I2C_MCS_ADRACK 0x04
#define STELLARIS_I2C_MCS_DATACK 0x08
#define STELLARIS_I2C_MCS_ARBLST 0x10
#define STELLARIS_I2C_MCS_IDLE 0x20
#define STELLARIS_I2C_MCS_BUSBSY 0x40
static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
unsigned size)
{
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
switch (offset) {
case 0x00: /* MSA */
return s->msa;
case 0x04: /* MCS */
/* We don't emulate timing, so the controller is never busy. */
return s->mcs | STELLARIS_I2C_MCS_IDLE;
case 0x08: /* MDR */
return s->mdr;
case 0x0c: /* MTPR */
return s->mtpr;
case 0x10: /* MIMR */
return s->mimr;
case 0x14: /* MRIS */
return s->mris;
case 0x18: /* MMIS */
return s->mris & s->mimr;
case 0x20: /* MCR */
return s->mcr;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
return 0;
}
}
static void stellaris_i2c_update(stellaris_i2c_state *s)
{
int level;
level = (s->mris & s->mimr) != 0;
qemu_set_irq(s->irq, level);
}
static void stellaris_i2c_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;
switch (offset) {
case 0x00: /* MSA */
s->msa = value & 0xff;
break;
case 0x04: /* MCS */
if ((s->mcr & 0x10) == 0) {
/* Disabled. Do nothing. */
break;
}
/* Grab the bus if this is starting a transfer. */
if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
s->mcs |= STELLARIS_I2C_MCS_ARBLST;
} else {
s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
}
}
/* If we don't have the bus then indicate an error. */
if (!i2c_bus_busy(s->bus)
|| (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
s->mcs |= STELLARIS_I2C_MCS_ERROR;
break;
}
s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
if (value & 1) {
/* Transfer a byte. */
/* TODO: Handle errors. */
if (s->msa & 1) {
/* Recv */
s->mdr = i2c_recv(s->bus);
} else {
/* Send */
i2c_send(s->bus, s->mdr);
}
/* Raise an interrupt. */
s->mris |= 1;
}
if (value & 4) {
/* Finish transfer. */
i2c_end_transfer(s->bus);
s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
}
break;
case 0x08: /* MDR */
s->mdr = value & 0xff;
break;
case 0x0c: /* MTPR */
s->mtpr = value & 0xff;
break;
case 0x10: /* MIMR */
s->mimr = 1;
break;
case 0x1c: /* MICR */
s->mris &= ~value;
break;
case 0x20: /* MCR */
if (value & 1) {
qemu_log_mask(LOG_UNIMP,
"stellaris_i2c: Loopback not implemented\n");
}
if (value & 0x20) {
qemu_log_mask(LOG_UNIMP,
"stellaris_i2c: Slave mode not implemented\n");
}
s->mcr = value & 0x31;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
}
stellaris_i2c_update(s);
}
static void stellaris_i2c_reset_enter(Object *obj, ResetType type)
{
stellaris_i2c_state *s = STELLARIS_I2C(obj);
if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
i2c_end_transfer(s->bus);
}
static void stellaris_i2c_reset_hold(Object *obj, ResetType type)
{
stellaris_i2c_state *s = STELLARIS_I2C(obj);
s->msa = 0;
s->mcs = 0;
s->mdr = 0;
s->mtpr = 1;
s->mimr = 0;
s->mris = 0;
s->mcr = 0;
}
static void stellaris_i2c_reset_exit(Object *obj, ResetType type)
{
stellaris_i2c_state *s = STELLARIS_I2C(obj);
stellaris_i2c_update(s);
}
static const MemoryRegionOps stellaris_i2c_ops = {
.read = stellaris_i2c_read,
.write = stellaris_i2c_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_stellaris_i2c = {
.name = "stellaris_i2c",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(msa, stellaris_i2c_state),
VMSTATE_UINT32(mcs, stellaris_i2c_state),
VMSTATE_UINT32(mdr, stellaris_i2c_state),
VMSTATE_UINT32(mtpr, stellaris_i2c_state),
VMSTATE_UINT32(mimr, stellaris_i2c_state),
VMSTATE_UINT32(mris, stellaris_i2c_state),
VMSTATE_UINT32(mcr, stellaris_i2c_state),
VMSTATE_END_OF_LIST()
}
};
static void stellaris_i2c_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
stellaris_i2c_state *s = STELLARIS_I2C(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
I2CBus *bus;
sysbus_init_irq(sbd, &s->irq);
bus = i2c_init_bus(dev, "i2c");
s->bus = bus;
memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
"i2c", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
}
/* Analogue to Digital Converter. This is only partially implemented,
enough for applications that use a combined ADC and timer tick. */
#define STELLARIS_ADC_EM_CONTROLLER 0
#define STELLARIS_ADC_EM_COMP 1
#define STELLARIS_ADC_EM_EXTERNAL 4
#define STELLARIS_ADC_EM_TIMER 5
#define STELLARIS_ADC_EM_PWM0 6
#define STELLARIS_ADC_EM_PWM1 7
#define STELLARIS_ADC_EM_PWM2 8
#define STELLARIS_ADC_FIFO_EMPTY 0x0100
#define STELLARIS_ADC_FIFO_FULL 0x1000
#define TYPE_STELLARIS_ADC "stellaris-adc"
typedef struct StellarisADCState StellarisADCState;
DECLARE_INSTANCE_CHECKER(StellarisADCState, STELLARIS_ADC, TYPE_STELLARIS_ADC)
struct StellarisADCState {
SysBusDevice parent_obj;
MemoryRegion iomem;
uint32_t actss;
uint32_t ris;
uint32_t im;
uint32_t emux;
uint32_t ostat;
uint32_t ustat;
uint32_t sspri;
uint32_t sac;
struct {
uint32_t state;
uint32_t data[16];
} fifo[4];
uint32_t ssmux[4];
uint32_t ssctl[4];
uint32_t noise;
qemu_irq irq[4];
};
static uint32_t stellaris_adc_fifo_read(StellarisADCState *s, int n)
{
int tail;
tail = s->fifo[n].state & 0xf;
if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
s->ustat |= 1 << n;
} else {
s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
}
return s->fifo[n].data[tail];
}
static void stellaris_adc_fifo_write(StellarisADCState *s, int n,
uint32_t value)
{
int head;
/* TODO: Real hardware has limited size FIFOs. We have a full 16 entry
FIFO fir each sequencer. */
head = (s->fifo[n].state >> 4) & 0xf;
if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
s->ostat |= 1 << n;
return;
}
s->fifo[n].data[head] = value;
head = (head + 1) & 0xf;
s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
if ((s->fifo[n].state & 0xf) == head)
s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
}
static void stellaris_adc_update(StellarisADCState *s)
{
int level;
int n;
for (n = 0; n < 4; n++) {
level = (s->ris & s->im & (1 << n)) != 0;
qemu_set_irq(s->irq[n], level);
}
}
static void stellaris_adc_trigger(void *opaque, int irq, int level)
{
StellarisADCState *s = opaque;
int n;
for (n = 0; n < 4; n++) {
if ((s->actss & (1 << n)) == 0) {
continue;
}
if (((s->emux >> (n * 4)) & 0xff) != 5) {
continue;
}
/* Some applications use the ADC as a random number source, so introduce
some variation into the signal. */
s->noise = s->noise * 314159 + 1;
/* ??? actual inputs not implemented. Return an arbitrary value. */
stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
s->ris |= (1 << n);
stellaris_adc_update(s);
}
}
static void stellaris_adc_reset_hold(Object *obj, ResetType type)
{
StellarisADCState *s = STELLARIS_ADC(obj);
int n;
for (n = 0; n < 4; n++) {
s->ssmux[n] = 0;
s->ssctl[n] = 0;
s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
}
}
static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
unsigned size)
{
StellarisADCState *s = opaque;
/* TODO: Implement this. */
if (offset >= 0x40 && offset < 0xc0) {
int n;
n = (offset - 0x40) >> 5;
switch (offset & 0x1f) {
case 0x00: /* SSMUX */
return s->ssmux[n];
case 0x04: /* SSCTL */
return s->ssctl[n];
case 0x08: /* SSFIFO */
return stellaris_adc_fifo_read(s, n);
case 0x0c: /* SSFSTAT */
return s->fifo[n].state;
default:
break;
}
}
switch (offset) {
case 0x00: /* ACTSS */
return s->actss;
case 0x04: /* RIS */
return s->ris;
case 0x08: /* IM */
return s->im;
case 0x0c: /* ISC */
return s->ris & s->im;
case 0x10: /* OSTAT */
return s->ostat;
case 0x14: /* EMUX */
return s->emux;
case 0x18: /* USTAT */
return s->ustat;
case 0x20: /* SSPRI */
return s->sspri;
case 0x30: /* SAC */
return s->sac;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"stellaris_adc: read at bad offset 0x%x\n", (int)offset);
return 0;
}
}
static void stellaris_adc_write(void *opaque, hwaddr offset,
uint64_t value, unsigned size)
{
StellarisADCState *s = opaque;
/* TODO: Implement this. */
if (offset >= 0x40 && offset < 0xc0) {
int n;
n = (offset - 0x40) >> 5;
switch (offset & 0x1f) {
case 0x00: /* SSMUX */
s->ssmux[n] = value & 0x33333333;
return;
case 0x04: /* SSCTL */
if (value != 6) {
qemu_log_mask(LOG_UNIMP,
"ADC: Unimplemented sequence %" PRIx64 "\n",
value);
}
s->ssctl[n] = value;
return;
default:
break;
}
}
switch (offset) {
case 0x00: /* ACTSS */
s->actss = value & 0xf;
break;
case 0x08: /* IM */
s->im = value;
break;
case 0x0c: /* ISC */
s->ris &= ~value;
break;
case 0x10: /* OSTAT */
s->ostat &= ~value;
break;
case 0x14: /* EMUX */
s->emux = value;
break;
case 0x18: /* USTAT */
s->ustat &= ~value;
break;
case 0x20: /* SSPRI */
s->sspri = value;
break;
case 0x28: /* PSSI */
qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
break;
case 0x30: /* SAC */
s->sac = value;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"stellaris_adc: write at bad offset 0x%x\n", (int)offset);
}
stellaris_adc_update(s);
}
static const MemoryRegionOps stellaris_adc_ops = {
.read = stellaris_adc_read,
.write = stellaris_adc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const VMStateDescription vmstate_stellaris_adc = {
.name = "stellaris_adc",
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(actss, StellarisADCState),
VMSTATE_UINT32(ris, StellarisADCState),
VMSTATE_UINT32(im, StellarisADCState),
VMSTATE_UINT32(emux, StellarisADCState),
VMSTATE_UINT32(ostat, StellarisADCState),
VMSTATE_UINT32(ustat, StellarisADCState),
VMSTATE_UINT32(sspri, StellarisADCState),
VMSTATE_UINT32(sac, StellarisADCState),
VMSTATE_UINT32(fifo[0].state, StellarisADCState),
VMSTATE_UINT32_ARRAY(fifo[0].data, StellarisADCState, 16),
VMSTATE_UINT32(ssmux[0], StellarisADCState),
VMSTATE_UINT32(ssctl[0], StellarisADCState),
VMSTATE_UINT32(fifo[1].state, StellarisADCState),
VMSTATE_UINT32_ARRAY(fifo[1].data, StellarisADCState, 16),
VMSTATE_UINT32(ssmux[1], StellarisADCState),
VMSTATE_UINT32(ssctl[1], StellarisADCState),
VMSTATE_UINT32(fifo[2].state, StellarisADCState),
VMSTATE_UINT32_ARRAY(fifo[2].data, StellarisADCState, 16),
VMSTATE_UINT32(ssmux[2], StellarisADCState),
VMSTATE_UINT32(ssctl[2], StellarisADCState),
VMSTATE_UINT32(fifo[3].state, StellarisADCState),
VMSTATE_UINT32_ARRAY(fifo[3].data, StellarisADCState, 16),
VMSTATE_UINT32(ssmux[3], StellarisADCState),
VMSTATE_UINT32(ssctl[3], StellarisADCState),
VMSTATE_UINT32(noise, StellarisADCState),
VMSTATE_END_OF_LIST()
}
};
static void stellaris_adc_init(Object *obj)
{
DeviceState *dev = DEVICE(obj);
StellarisADCState *s = STELLARIS_ADC(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
int n;
for (n = 0; n < 4; n++) {
sysbus_init_irq(sbd, &s->irq[n]);
}
memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
"adc", 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
}
/* Board init. */
static stellaris_board_info stellaris_boards[] = {
{ "LM3S811EVB",
0,
0x0032000e,
0x001f001f, /* dc0 */
0x001132bf,
0x01071013,
0x3f0f01ff,
0x0000001f,
BP_OLED_I2C
},
{ "LM3S6965EVB",
0x10010002,
0x1073402e,
0x00ff007f, /* dc0 */
0x001133ff,
0x030f5317,
0x0f0f87ff,
0x5000007f,
BP_OLED_SSI | BP_GAMEPAD
}
};
static void stellaris_init(MachineState *ms, stellaris_board_info *board)
{
static const int uart_irq[] = {5, 6, 33, 34};
static const int timer_irq[] = {19, 21, 23, 35};
static const uint32_t gpio_addr[7] =
{ 0x40004000, 0x40005000, 0x40006000, 0x40007000,
0x40024000, 0x40025000, 0x40026000};
static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};
/* Memory map of SoC devices, from
* Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
* http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
*
* 40000000 wdtimer
* 40002000 i2c (unimplemented)
* 40004000 GPIO
* 40005000 GPIO
* 40006000 GPIO
* 40007000 GPIO
* 40008000 SSI
* 4000c000 UART
* 4000d000 UART
* 4000e000 UART
* 40020000 i2c
* 40021000 i2c (unimplemented)
* 40024000 GPIO
* 40025000 GPIO
* 40026000 GPIO
* 40028000 PWM (unimplemented)
* 4002c000 QEI (unimplemented)
* 4002d000 QEI (unimplemented)
* 40030000 gptimer
* 40031000 gptimer
* 40032000 gptimer
* 40033000 gptimer
* 40038000 ADC
* 4003c000 analogue comparator (unimplemented)
* 40048000 ethernet
* 400fc000 hibernation module (unimplemented)
* 400fd000 flash memory control (unimplemented)
* 400fe000 system control
*/
Object *soc_container;
DeviceState *gpio_dev[7], *nvic;
qemu_irq gpio_in[7][8];
qemu_irq gpio_out[7][8];
qemu_irq adc;
int sram_size;
int flash_size;
I2CBus *i2c;
DeviceState *dev;
DeviceState *ssys_dev;
int i;
int j;
NICInfo *nd;
MACAddr mac;
MemoryRegion *sram = g_new(MemoryRegion, 1);
MemoryRegion *flash = g_new(MemoryRegion, 1);
MemoryRegion *system_memory = get_system_memory();
flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
sram_size = ((board->dc0 >> 18) + 1) * 1024;
soc_container = object_new("container");
object_property_add_child(OBJECT(ms), "soc", soc_container);
/* Flash programming is done via the SCU, so pretend it is ROM. */
memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
&error_fatal);
memory_region_add_subregion(system_memory, 0, flash);
memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
&error_fatal);
memory_region_add_subregion(system_memory, 0x20000000, sram);
/*
* Create the system-registers object early, because we will
* need its sysclk output.
*/
ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
object_property_add_child(soc_container, "sys", OBJECT(ssys_dev));
/*
* Most devices come preprogrammed with a MAC address in the user data.
* Generate a MAC address now, if there isn't a matching -nic for it.
*/
nd = qemu_find_nic_info("stellaris_enet", true, "stellaris");
if (nd) {
memcpy(mac.a, nd->macaddr.a, sizeof(mac.a));
} else {
qemu_macaddr_default_if_unset(&mac);
}
qdev_prop_set_uint32(ssys_dev, "user0",
mac.a[0] | (mac.a[1] << 8) | (mac.a[2] << 16));
qdev_prop_set_uint32(ssys_dev, "user1",
mac.a[3] | (mac.a[4] << 8) | (mac.a[5] << 16));
qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);
nvic = qdev_new(TYPE_ARMV7M);
object_property_add_child(soc_container, "v7m", OBJECT(nvic));
qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
qdev_prop_set_uint8(nvic, "num-prio-bits", NUM_PRIO_BITS);
qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
qdev_prop_set_bit(nvic, "enable-bitband", true);
qdev_connect_clock_in(nvic, "cpuclk",
qdev_get_clock_out(ssys_dev, "SYSCLK"));
/* This SoC does not connect the systick reference clock */
object_property_set_link(OBJECT(nvic), "memory",
OBJECT(get_system_memory()), &error_abort);
/* This will exit with an error if the user passed us a bad cpu_type */
sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);
/* Now we can wire up the IRQ and MMIO of the system registers */
sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));
if (board->dc1 & (1 << 16)) {
dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
qdev_get_gpio_in(nvic, 14),
qdev_get_gpio_in(nvic, 15),
qdev_get_gpio_in(nvic, 16),
qdev_get_gpio_in(nvic, 17),
NULL);
adc = qdev_get_gpio_in(dev, 0);
} else {
adc = NULL;
}
for (i = 0; i < 4; i++) {
if (board->dc2 & (0x10000 << i)) {
SysBusDevice *sbd;
dev = qdev_new(TYPE_STELLARIS_GPTM);
sbd = SYS_BUS_DEVICE(dev);
object_property_add_child(soc_container, "gptm[*]", OBJECT(dev));
qdev_connect_clock_in(dev, "clk",
qdev_get_clock_out(ssys_dev, "SYSCLK"));
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
/* TODO: This is incorrect, but we get away with it because
the ADC output is only ever pulsed. */
qdev_connect_gpio_out(dev, 0, adc);
}
}
if (board->dc1 & (1 << 3)) { /* watchdog present */
dev = qdev_new(TYPE_LUMINARY_WATCHDOG);
object_property_add_child(soc_container, "wdg", OBJECT(dev));
qdev_connect_clock_in(dev, "WDOGCLK",
qdev_get_clock_out(ssys_dev, "SYSCLK"));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev),
0,
0x40000000u);
sysbus_connect_irq(SYS_BUS_DEVICE(dev),
0,
qdev_get_gpio_in(nvic, 18));
}
for (i = 0; i < 7; i++) {
if (board->dc4 & (1 << i)) {
gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
qdev_get_gpio_in(nvic,
gpio_irq[i]));
for (j = 0; j < 8; j++) {
gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
gpio_out[i][j] = NULL;
}
}
}
if (board->dc2 & (1 << 12)) {
dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
qdev_get_gpio_in(nvic, 8));
i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
if (board->peripherals & BP_OLED_I2C) {
i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
}
}
for (i = 0; i < 4; i++) {
if (board->dc2 & (1 << i)) {
SysBusDevice *sbd;
dev = qdev_new("pl011_luminary");
object_property_add_child(soc_container, "uart[*]", OBJECT(dev));
sbd = SYS_BUS_DEVICE(dev);
qdev_prop_set_chr(dev, "chardev", serial_hd(i));
sysbus_realize_and_unref(sbd, &error_fatal);
sysbus_mmio_map(sbd, 0, 0x4000c000 + i * 0x1000);
sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, uart_irq[i]));
}
}
if (board->dc2 & (1 << 4)) {
dev = sysbus_create_simple("pl022", 0x40008000,
qdev_get_gpio_in(nvic, 7));
if (board->peripherals & BP_OLED_SSI) {
void *bus;
DeviceState *sddev;
DeviceState *ssddev;
DriveInfo *dinfo;
DeviceState *carddev;
DeviceState *gpio_d_splitter;
BlockBackend *blk;
/*
* Some boards have both an OLED controller and SD card connected to
* the same SSI port, with the SD card chip select connected to a
* GPIO pin. Technically the OLED chip select is connected to the
* SSI Fss pin. We do not bother emulating that as both devices
* should never be selected simultaneously, and our OLED controller
* ignores stray 0xff commands that occur when deselecting the SD
* card.
*
* The h/w wiring is:
* - GPIO pin D0 is wired to the active-low SD card chip select
* - GPIO pin A3 is wired to the active-low OLED chip select
* - The SoC wiring of the PL061 "auxiliary function" for A3 is
* SSI0Fss ("frame signal"), which is an output from the SoC's
* SSI controller. The SSI controller takes SSI0Fss low when it
* transmits a frame, so it can work as a chip-select signal.
* - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
* (the OLED never sends data to the CPU, so no wiring needed)
* - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
* and the OLED display-data-in
* - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
* serial-clock input
* So a guest that wants to use the OLED can configure the PL061
* to make pins A2, A3, A5 aux-function, so they are connected
* directly to the SSI controller. When the SSI controller sends
* data it asserts SSI0Fss which selects the OLED.
* A guest that wants to use the SD card configures A2, A4 and A5
* as aux-function, but leaves A3 as a software-controlled GPIO
* line. It asserts the SD card chip-select by using the PL061
* to control pin D0, and lets the SSI controller handle Clk, Tx
* and Rx. (The SSI controller asserts Fss during tx cycles as
* usual, but because A3 is not set to aux-function this is not
* forwarded to the OLED, and so the OLED stays unselected.)
*
* The QEMU implementation instead is:
* - GPIO pin D0 is wired to the active-low SD card chip select,
* and also to the OLED chip-select which is implemented
* as *active-high*
* - SSI controller signals go to the devices regardless of
* whether the guest programs A2, A4, A5 as aux-function or not
*
* The problem with this implementation is if the guest doesn't
* care about the SD card and only uses the OLED. In that case it
* may choose never to do anything with D0 (leaving it in its
* default floating state, which reliably leaves the card disabled
* because an SD card has a pullup on CS within the card itself),
* and only set up A2, A3, A5. This for us would mean the OLED
* never gets the chip-select assert it needs. We work around
* this with a manual raise of D0 here (despite board creation
* code being the wrong place to raise IRQ lines) to put the OLED
* into an initially selected state.
*
* In theory the right way to model this would be:
* - Implement aux-function support in the PL061, with an
* extra set of AFIN and AFOUT GPIO lines (set up so that
* if a GPIO line is in auxfn mode the main GPIO in and out
* track the AFIN and AFOUT lines)
* - Wire the AFOUT for D0 up to either a line from the
* SSI controller that's pulled low around every transmit,
* or at least to an always-0 line here on the board
* - Make the ssd0323 OLED controller chipselect active-low
*/
bus = qdev_get_child_bus(dev, "ssi");
sddev = ssi_create_peripheral(bus, "ssi-sd");
dinfo = drive_get(IF_SD, 0, 0);
blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
carddev = qdev_new(TYPE_SD_CARD_SPI);
qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
qdev_realize_and_unref(carddev,
qdev_get_child_bus(sddev, "sd-bus"),
&error_fatal);
ssddev = qdev_new("ssd0323");
object_property_add_child(OBJECT(ms), "oled", OBJECT(ssddev));
qdev_prop_set_uint8(ssddev, "cs", 1);
qdev_realize_and_unref(ssddev, bus, &error_fatal);
gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
object_property_add_child(OBJECT(ms), "splitter",
OBJECT(gpio_d_splitter));
qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
qdev_connect_gpio_out(
gpio_d_splitter, 0,
qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
qdev_connect_gpio_out(
gpio_d_splitter, 1,
qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);
gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);
/* Make sure the select pin is high. */
qemu_irq_raise(gpio_out[GPIO_D][0]);
}
}
if (board->dc4 & (1 << 28)) {
DeviceState *enet;
enet = qdev_new("stellaris_enet");
object_property_add_child(soc_container, "enet", OBJECT(enet));
if (nd) {
qdev_set_nic_properties(enet, nd);
} else {
qdev_prop_set_macaddr(enet, "mac", mac.a);
}
sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
}
if (board->peripherals & BP_GAMEPAD) {
QList *gpad_keycode_list = qlist_new();
static const int gpad_keycode[5] = {
Q_KEY_CODE_UP, Q_KEY_CODE_DOWN, Q_KEY_CODE_LEFT,
Q_KEY_CODE_RIGHT, Q_KEY_CODE_CTRL,
};
DeviceState *gpad;
gpad = qdev_new(TYPE_STELLARIS_GAMEPAD);
object_property_add_child(OBJECT(ms), "gamepad", OBJECT(gpad));
for (i = 0; i < ARRAY_SIZE(gpad_keycode); i++) {
qlist_append_int(gpad_keycode_list, gpad_keycode[i]);
}
qdev_prop_set_array(gpad, "keycodes", gpad_keycode_list);
sysbus_realize_and_unref(SYS_BUS_DEVICE(gpad), &error_fatal);
qdev_connect_gpio_out(gpad, 0,
qemu_irq_invert(gpio_in[GPIO_E][0])); /* up */
qdev_connect_gpio_out(gpad, 1,
qemu_irq_invert(gpio_in[GPIO_E][1])); /* down */
qdev_connect_gpio_out(gpad, 2,
qemu_irq_invert(gpio_in[GPIO_E][2])); /* left */
qdev_connect_gpio_out(gpad, 3,
qemu_irq_invert(gpio_in[GPIO_E][3])); /* right */
qdev_connect_gpio_out(gpad, 4,
qemu_irq_invert(gpio_in[GPIO_F][1])); /* select */
}
for (i = 0; i < 7; i++) {
if (board->dc4 & (1 << i)) {
for (j = 0; j < 8; j++) {
if (gpio_out[i][j]) {
qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
}
}
}
}
/* Add dummy regions for the devices we don't implement yet,
* so guest accesses don't cause unlogged crashes.
*/
create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
create_unimplemented_device("PWM", 0x40028000, 0x1000);
create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
create_unimplemented_device("flash-control", 0x400fd000, 0x1000);
armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
}
/* FIXME: Figure out how to generate these from stellaris_boards. */
static void lm3s811evb_init(MachineState *machine)
{
stellaris_init(machine, &stellaris_boards[0]);
}
static void lm3s6965evb_init(MachineState *machine)
{
stellaris_init(machine, &stellaris_boards[1]);
}
static void lm3s811evb_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
mc->init = lm3s811evb_init;
mc->ignore_memory_transaction_failures = true;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
}
static const TypeInfo lm3s811evb_type = {
.name = MACHINE_TYPE_NAME("lm3s811evb"),
.parent = TYPE_MACHINE,
.class_init = lm3s811evb_class_init,
};
static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
mc->init = lm3s6965evb_init;
mc->ignore_memory_transaction_failures = true;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
}
static const TypeInfo lm3s6965evb_type = {
.name = MACHINE_TYPE_NAME("lm3s6965evb"),
.parent = TYPE_MACHINE,
.class_init = lm3s6965evb_class_init,
};
static void stellaris_machine_init(void)
{
type_register_static(&lm3s811evb_type);
type_register_static(&lm3s6965evb_type);
}
type_init(stellaris_machine_init)
static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.enter = stellaris_i2c_reset_enter;
rc->phases.hold = stellaris_i2c_reset_hold;
rc->phases.exit = stellaris_i2c_reset_exit;
dc->vmsd = &vmstate_stellaris_i2c;
}
static const TypeInfo stellaris_i2c_info = {
.name = TYPE_STELLARIS_I2C,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(stellaris_i2c_state),
.instance_init = stellaris_i2c_init,
.class_init = stellaris_i2c_class_init,
};
static void stellaris_adc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
rc->phases.hold = stellaris_adc_reset_hold;
dc->vmsd = &vmstate_stellaris_adc;
}
static const TypeInfo stellaris_adc_info = {
.name = TYPE_STELLARIS_ADC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(StellarisADCState),
.instance_init = stellaris_adc_init,
.class_init = stellaris_adc_class_init,
};
static void stellaris_sys_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->vmsd = &vmstate_stellaris_sys;
rc->phases.enter = stellaris_sys_reset_enter;
rc->phases.hold = stellaris_sys_reset_hold;
rc->phases.exit = stellaris_sys_reset_exit;
device_class_set_props(dc, stellaris_sys_properties);
}
static const TypeInfo stellaris_sys_info = {
.name = TYPE_STELLARIS_SYS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(ssys_state),
.instance_init = stellaris_sys_instance_init,
.class_init = stellaris_sys_class_init,
};
static void stellaris_register_types(void)
{
type_register_static(&stellaris_i2c_info);
type_register_static(&stellaris_adc_info);
type_register_static(&stellaris_sys_info);
}
type_init(stellaris_register_types)