You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/hw/arm/smmu-common.c

973 lines
30 KiB
C

/*
* Copyright (C) 2014-2016 Broadcom Corporation
* Copyright (c) 2017 Red Hat, Inc.
* Written by Prem Mallappa, Eric Auger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* Author: Prem Mallappa <pmallapp@broadcom.com>
*
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "exec/target_page.h"
#include "hw/core/cpu.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qemu/jhash.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "hw/arm/smmu-common.h"
#include "smmu-internal.h"
/* IOTLB Management */
static guint smmu_iotlb_key_hash(gconstpointer v)
{
SMMUIOTLBKey *key = (SMMUIOTLBKey *)v;
uint32_t a, b, c;
/* Jenkins hash */
a = b = c = JHASH_INITVAL + sizeof(*key);
a += key->asid + key->vmid + key->level + key->tg;
b += extract64(key->iova, 0, 32);
c += extract64(key->iova, 32, 32);
__jhash_mix(a, b, c);
__jhash_final(a, b, c);
return c;
}
static gboolean smmu_iotlb_key_equal(gconstpointer v1, gconstpointer v2)
{
SMMUIOTLBKey *k1 = (SMMUIOTLBKey *)v1, *k2 = (SMMUIOTLBKey *)v2;
return (k1->asid == k2->asid) && (k1->iova == k2->iova) &&
(k1->level == k2->level) && (k1->tg == k2->tg) &&
(k1->vmid == k2->vmid);
}
SMMUIOTLBKey smmu_get_iotlb_key(int asid, int vmid, uint64_t iova,
uint8_t tg, uint8_t level)
{
SMMUIOTLBKey key = {.asid = asid, .vmid = vmid, .iova = iova,
.tg = tg, .level = level};
return key;
}
static SMMUTLBEntry *smmu_iotlb_lookup_all_levels(SMMUState *bs,
SMMUTransCfg *cfg,
SMMUTransTableInfo *tt,
hwaddr iova)
{
uint8_t tg = (tt->granule_sz - 10) / 2;
uint8_t inputsize = 64 - tt->tsz;
uint8_t stride = tt->granule_sz - 3;
uint8_t level = 4 - (inputsize - 4) / stride;
SMMUTLBEntry *entry = NULL;
while (level <= 3) {
uint64_t subpage_size = 1ULL << level_shift(level, tt->granule_sz);
uint64_t mask = subpage_size - 1;
SMMUIOTLBKey key;
key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid,
iova & ~mask, tg, level);
entry = g_hash_table_lookup(bs->iotlb, &key);
if (entry) {
break;
}
level++;
}
return entry;
}
/**
* smmu_iotlb_lookup - Look up for a TLB entry.
* @bs: SMMU state which includes the TLB instance
* @cfg: Configuration of the translation
* @tt: Translation table info (granule and tsz)
* @iova: IOVA address to lookup
*
* returns a valid entry on success, otherwise NULL.
* In case of nested translation, tt can be updated to include
* the granule of the found entry as it might different from
* the IOVA granule.
*/
SMMUTLBEntry *smmu_iotlb_lookup(SMMUState *bs, SMMUTransCfg *cfg,
SMMUTransTableInfo *tt, hwaddr iova)
{
SMMUTLBEntry *entry = NULL;
entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova);
/*
* For nested translation also try the s2 granule, as the TLB will insert
* it if the size of s2 tlb entry was smaller.
*/
if (!entry && (cfg->stage == SMMU_NESTED) &&
(cfg->s2cfg.granule_sz != tt->granule_sz)) {
tt->granule_sz = cfg->s2cfg.granule_sz;
entry = smmu_iotlb_lookup_all_levels(bs, cfg, tt, iova);
}
if (entry) {
cfg->iotlb_hits++;
trace_smmu_iotlb_lookup_hit(cfg->asid, cfg->s2cfg.vmid, iova,
cfg->iotlb_hits, cfg->iotlb_misses,
100 * cfg->iotlb_hits /
(cfg->iotlb_hits + cfg->iotlb_misses));
} else {
cfg->iotlb_misses++;
trace_smmu_iotlb_lookup_miss(cfg->asid, cfg->s2cfg.vmid, iova,
cfg->iotlb_hits, cfg->iotlb_misses,
100 * cfg->iotlb_hits /
(cfg->iotlb_hits + cfg->iotlb_misses));
}
return entry;
}
void smmu_iotlb_insert(SMMUState *bs, SMMUTransCfg *cfg, SMMUTLBEntry *new)
{
SMMUIOTLBKey *key = g_new0(SMMUIOTLBKey, 1);
uint8_t tg = (new->granule - 10) / 2;
if (g_hash_table_size(bs->iotlb) >= SMMU_IOTLB_MAX_SIZE) {
smmu_iotlb_inv_all(bs);
}
*key = smmu_get_iotlb_key(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
tg, new->level);
trace_smmu_iotlb_insert(cfg->asid, cfg->s2cfg.vmid, new->entry.iova,
tg, new->level);
g_hash_table_insert(bs->iotlb, key, new);
}
void smmu_iotlb_inv_all(SMMUState *s)
{
trace_smmu_iotlb_inv_all();
g_hash_table_remove_all(s->iotlb);
}
static gboolean smmu_hash_remove_by_asid_vmid(gpointer key, gpointer value,
gpointer user_data)
{
SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
return (SMMU_IOTLB_ASID(*iotlb_key) == info->asid) &&
(SMMU_IOTLB_VMID(*iotlb_key) == info->vmid);
}
static gboolean smmu_hash_remove_by_vmid(gpointer key, gpointer value,
gpointer user_data)
{
int vmid = *(int *)user_data;
SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
return SMMU_IOTLB_VMID(*iotlb_key) == vmid;
}
static gboolean smmu_hash_remove_by_vmid_s1(gpointer key, gpointer value,
gpointer user_data)
{
int vmid = *(int *)user_data;
SMMUIOTLBKey *iotlb_key = (SMMUIOTLBKey *)key;
return (SMMU_IOTLB_VMID(*iotlb_key) == vmid) &&
(SMMU_IOTLB_ASID(*iotlb_key) >= 0);
}
static gboolean smmu_hash_remove_by_asid_vmid_iova(gpointer key, gpointer value,
gpointer user_data)
{
SMMUTLBEntry *iter = (SMMUTLBEntry *)value;
IOMMUTLBEntry *entry = &iter->entry;
SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key;
if (info->asid >= 0 && info->asid != SMMU_IOTLB_ASID(iotlb_key)) {
return false;
}
if (info->vmid >= 0 && info->vmid != SMMU_IOTLB_VMID(iotlb_key)) {
return false;
}
return ((info->iova & ~entry->addr_mask) == entry->iova) ||
((entry->iova & ~info->mask) == info->iova);
}
static gboolean smmu_hash_remove_by_vmid_ipa(gpointer key, gpointer value,
gpointer user_data)
{
SMMUTLBEntry *iter = (SMMUTLBEntry *)value;
IOMMUTLBEntry *entry = &iter->entry;
SMMUIOTLBPageInvInfo *info = (SMMUIOTLBPageInvInfo *)user_data;
SMMUIOTLBKey iotlb_key = *(SMMUIOTLBKey *)key;
if (SMMU_IOTLB_ASID(iotlb_key) >= 0) {
/* This is a stage-1 address. */
return false;
}
if (info->vmid != SMMU_IOTLB_VMID(iotlb_key)) {
return false;
}
return ((info->iova & ~entry->addr_mask) == entry->iova) ||
((entry->iova & ~info->mask) == info->iova);
}
void smmu_iotlb_inv_iova(SMMUState *s, int asid, int vmid, dma_addr_t iova,
uint8_t tg, uint64_t num_pages, uint8_t ttl)
{
/* if tg is not set we use 4KB range invalidation */
uint8_t granule = tg ? tg * 2 + 10 : 12;
if (ttl && (num_pages == 1) && (asid >= 0)) {
SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, iova, tg, ttl);
if (g_hash_table_remove(s->iotlb, &key)) {
return;
}
/*
* if the entry is not found, let's see if it does not
* belong to a larger IOTLB entry
*/
}
SMMUIOTLBPageInvInfo info = {
.asid = asid, .iova = iova,
.vmid = vmid,
.mask = (num_pages * 1 << granule) - 1};
g_hash_table_foreach_remove(s->iotlb,
smmu_hash_remove_by_asid_vmid_iova,
&info);
}
/*
* Similar to smmu_iotlb_inv_iova(), but for Stage-2, ASID is always -1,
* in Stage-1 invalidation ASID = -1, means don't care.
*/
void smmu_iotlb_inv_ipa(SMMUState *s, int vmid, dma_addr_t ipa, uint8_t tg,
uint64_t num_pages, uint8_t ttl)
{
uint8_t granule = tg ? tg * 2 + 10 : 12;
int asid = -1;
if (ttl && (num_pages == 1)) {
SMMUIOTLBKey key = smmu_get_iotlb_key(asid, vmid, ipa, tg, ttl);
if (g_hash_table_remove(s->iotlb, &key)) {
return;
}
}
SMMUIOTLBPageInvInfo info = {
.iova = ipa,
.vmid = vmid,
.mask = (num_pages << granule) - 1};
g_hash_table_foreach_remove(s->iotlb,
smmu_hash_remove_by_vmid_ipa,
&info);
}
void smmu_iotlb_inv_asid_vmid(SMMUState *s, int asid, int vmid)
{
SMMUIOTLBPageInvInfo info = {
.asid = asid,
.vmid = vmid,
};
trace_smmu_iotlb_inv_asid_vmid(asid, vmid);
g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_asid_vmid, &info);
}
void smmu_iotlb_inv_vmid(SMMUState *s, int vmid)
{
trace_smmu_iotlb_inv_vmid(vmid);
g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid, &vmid);
}
inline void smmu_iotlb_inv_vmid_s1(SMMUState *s, int vmid)
{
trace_smmu_iotlb_inv_vmid_s1(vmid);
g_hash_table_foreach_remove(s->iotlb, smmu_hash_remove_by_vmid_s1, &vmid);
}
/* VMSAv8-64 Translation */
/**
* get_pte - Get the content of a page table entry located at
* @base_addr[@index]
*/
static int get_pte(dma_addr_t baseaddr, uint32_t index, uint64_t *pte,
SMMUPTWEventInfo *info)
{
int ret;
dma_addr_t addr = baseaddr + index * sizeof(*pte);
/* TODO: guarantee 64-bit single-copy atomicity */
ret = ldq_le_dma(&address_space_memory, addr, pte, MEMTXATTRS_UNSPECIFIED);
if (ret != MEMTX_OK) {
info->type = SMMU_PTW_ERR_WALK_EABT;
info->addr = addr;
return -EINVAL;
}
trace_smmu_get_pte(baseaddr, index, addr, *pte);
return 0;
}
/* VMSAv8-64 Translation Table Format Descriptor Decoding */
/**
* get_page_pte_address - returns the L3 descriptor output address,
* ie. the page frame
* ARM ARM spec: Figure D4-17 VMSAv8-64 level 3 descriptor format
*/
static inline hwaddr get_page_pte_address(uint64_t pte, int granule_sz)
{
return PTE_ADDRESS(pte, granule_sz);
}
/**
* get_table_pte_address - return table descriptor output address,
* ie. address of next level table
* ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
*/
static inline hwaddr get_table_pte_address(uint64_t pte, int granule_sz)
{
return PTE_ADDRESS(pte, granule_sz);
}
/**
* get_block_pte_address - return block descriptor output address and block size
* ARM ARM Figure D4-16 VMSAv8-64 level0, level1, and level 2 descriptor formats
*/
static inline hwaddr get_block_pte_address(uint64_t pte, int level,
int granule_sz, uint64_t *bsz)
{
int n = level_shift(level, granule_sz);
*bsz = 1ULL << n;
return PTE_ADDRESS(pte, n);
}
SMMUTransTableInfo *select_tt(SMMUTransCfg *cfg, dma_addr_t iova)
{
bool tbi = extract64(iova, 55, 1) ? TBI1(cfg->tbi) : TBI0(cfg->tbi);
uint8_t tbi_byte = tbi * 8;
if (cfg->tt[0].tsz &&
!extract64(iova, 64 - cfg->tt[0].tsz, cfg->tt[0].tsz - tbi_byte)) {
/* there is a ttbr0 region and we are in it (high bits all zero) */
return &cfg->tt[0];
} else if (cfg->tt[1].tsz &&
sextract64(iova, 64 - cfg->tt[1].tsz, cfg->tt[1].tsz - tbi_byte) == -1) {
/* there is a ttbr1 region and we are in it (high bits all one) */
return &cfg->tt[1];
} else if (!cfg->tt[0].tsz) {
/* ttbr0 region is "everything not in the ttbr1 region" */
return &cfg->tt[0];
} else if (!cfg->tt[1].tsz) {
/* ttbr1 region is "everything not in the ttbr0 region" */
return &cfg->tt[1];
}
/* in the gap between the two regions, this is a Translation fault */
return NULL;
}
/* Translate stage-1 table address using stage-2 page table. */
static inline int translate_table_addr_ipa(SMMUState *bs,
dma_addr_t *table_addr,
SMMUTransCfg *cfg,
SMMUPTWEventInfo *info)
{
dma_addr_t addr = *table_addr;
SMMUTLBEntry *cached_entry;
int asid;
/*
* The translation table walks performed from TTB0 or TTB1 are always
* performed in IPA space if stage 2 translations are enabled.
*/
asid = cfg->asid;
cfg->stage = SMMU_STAGE_2;
cfg->asid = -1;
cached_entry = smmu_translate(bs, cfg, addr, IOMMU_RO, info);
cfg->asid = asid;
cfg->stage = SMMU_NESTED;
if (cached_entry) {
*table_addr = CACHED_ENTRY_TO_ADDR(cached_entry, addr);
return 0;
}
info->stage = SMMU_STAGE_2;
info->addr = addr;
info->is_ipa_descriptor = true;
return -EINVAL;
}
/**
* smmu_ptw_64_s1 - VMSAv8-64 Walk of the page tables for a given IOVA
* @bs: smmu state which includes TLB instance
* @cfg: translation config
* @iova: iova to translate
* @perm: access type
* @tlbe: SMMUTLBEntry (out)
* @info: handle to an error info
*
* Return 0 on success, < 0 on error. In case of error, @info is filled
* and tlbe->perm is set to IOMMU_NONE.
* Upon success, @tlbe is filled with translated_addr and entry
* permission rights.
*/
static int smmu_ptw_64_s1(SMMUState *bs, SMMUTransCfg *cfg,
dma_addr_t iova, IOMMUAccessFlags perm,
SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
dma_addr_t baseaddr, indexmask;
SMMUStage stage = cfg->stage;
SMMUTransTableInfo *tt = select_tt(cfg, iova);
uint8_t level, granule_sz, inputsize, stride;
if (!tt || tt->disabled) {
info->type = SMMU_PTW_ERR_TRANSLATION;
goto error;
}
granule_sz = tt->granule_sz;
stride = VMSA_STRIDE(granule_sz);
inputsize = 64 - tt->tsz;
level = 4 - (inputsize - 4) / stride;
indexmask = VMSA_IDXMSK(inputsize, stride, level);
baseaddr = extract64(tt->ttb, 0, cfg->oas);
baseaddr &= ~indexmask;
while (level < VMSA_LEVELS) {
uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
uint64_t mask = subpage_size - 1;
uint32_t offset = iova_level_offset(iova, inputsize, level, granule_sz);
uint64_t pte, gpa;
dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
uint8_t ap;
if (get_pte(baseaddr, offset, &pte, info)) {
goto error;
}
trace_smmu_ptw_level(stage, level, iova, subpage_size,
baseaddr, offset, pte);
if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
pte_addr, offset, pte);
break;
}
if (is_table_pte(pte, level)) {
ap = PTE_APTABLE(pte);
if (is_permission_fault(ap, perm) && !tt->had) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error;
}
baseaddr = get_table_pte_address(pte, granule_sz);
if (cfg->stage == SMMU_NESTED) {
if (translate_table_addr_ipa(bs, &baseaddr, cfg, info)) {
goto error;
}
}
level++;
continue;
} else if (is_page_pte(pte, level)) {
gpa = get_page_pte_address(pte, granule_sz);
trace_smmu_ptw_page_pte(stage, level, iova,
baseaddr, pte_addr, pte, gpa);
} else {
uint64_t block_size;
gpa = get_block_pte_address(pte, level, granule_sz,
&block_size);
trace_smmu_ptw_block_pte(stage, level, baseaddr,
pte_addr, pte, iova, gpa,
block_size >> 20);
}
/*
* QEMU does not currently implement HTTU, so if AFFD and PTE.AF
* are 0 we take an Access flag fault. (5.4. Context Descriptor)
* An Access flag fault takes priority over a Permission fault.
*/
if (!PTE_AF(pte) && !cfg->affd) {
info->type = SMMU_PTW_ERR_ACCESS;
goto error;
}
ap = PTE_AP(pte);
if (is_permission_fault(ap, perm)) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error;
}
/*
* The address output from the translation causes a stage 1 Address
* Size fault if it exceeds the range of the effective IPA size for
* the given CD.
*/
if (gpa >= (1ULL << cfg->oas)) {
info->type = SMMU_PTW_ERR_ADDR_SIZE;
goto error;
}
tlbe->entry.translated_addr = gpa;
tlbe->entry.iova = iova & ~mask;
tlbe->entry.addr_mask = mask;
tlbe->parent_perm = PTE_AP_TO_PERM(ap);
tlbe->entry.perm = tlbe->parent_perm;
tlbe->level = level;
tlbe->granule = granule_sz;
return 0;
}
info->type = SMMU_PTW_ERR_TRANSLATION;
error:
info->stage = SMMU_STAGE_1;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
/**
* smmu_ptw_64_s2 - VMSAv8-64 Walk of the page tables for a given ipa
* for stage-2.
* @cfg: translation config
* @ipa: ipa to translate
* @perm: access type
* @tlbe: SMMUTLBEntry (out)
* @info: handle to an error info
*
* Return 0 on success, < 0 on error. In case of error, @info is filled
* and tlbe->perm is set to IOMMU_NONE.
* Upon success, @tlbe is filled with translated_addr and entry
* permission rights.
*/
static int smmu_ptw_64_s2(SMMUTransCfg *cfg,
dma_addr_t ipa, IOMMUAccessFlags perm,
SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
const SMMUStage stage = SMMU_STAGE_2;
int granule_sz = cfg->s2cfg.granule_sz;
/* ARM DDI0487I.a: Table D8-7. */
int inputsize = 64 - cfg->s2cfg.tsz;
int level = get_start_level(cfg->s2cfg.sl0, granule_sz);
int stride = VMSA_STRIDE(granule_sz);
int idx = pgd_concat_idx(level, granule_sz, ipa);
/*
* Get the ttb from concatenated structure.
* The offset is the idx * size of each ttb(number of ptes * (sizeof(pte))
*/
uint64_t baseaddr = extract64(cfg->s2cfg.vttb, 0, cfg->s2cfg.eff_ps) +
(1 << stride) * idx * sizeof(uint64_t);
dma_addr_t indexmask = VMSA_IDXMSK(inputsize, stride, level);
baseaddr &= ~indexmask;
/*
* On input, a stage 2 Translation fault occurs if the IPA is outside the
* range configured by the relevant S2T0SZ field of the STE.
*/
if (ipa >= (1ULL << inputsize)) {
info->type = SMMU_PTW_ERR_TRANSLATION;
goto error_ipa;
}
while (level < VMSA_LEVELS) {
uint64_t subpage_size = 1ULL << level_shift(level, granule_sz);
uint64_t mask = subpage_size - 1;
uint32_t offset = iova_level_offset(ipa, inputsize, level, granule_sz);
uint64_t pte, gpa;
dma_addr_t pte_addr = baseaddr + offset * sizeof(pte);
uint8_t s2ap;
if (get_pte(baseaddr, offset, &pte, info)) {
goto error;
}
trace_smmu_ptw_level(stage, level, ipa, subpage_size,
baseaddr, offset, pte);
if (is_invalid_pte(pte) || is_reserved_pte(pte, level)) {
trace_smmu_ptw_invalid_pte(stage, level, baseaddr,
pte_addr, offset, pte);
break;
}
if (is_table_pte(pte, level)) {
baseaddr = get_table_pte_address(pte, granule_sz);
level++;
continue;
} else if (is_page_pte(pte, level)) {
gpa = get_page_pte_address(pte, granule_sz);
trace_smmu_ptw_page_pte(stage, level, ipa,
baseaddr, pte_addr, pte, gpa);
} else {
uint64_t block_size;
gpa = get_block_pte_address(pte, level, granule_sz,
&block_size);
trace_smmu_ptw_block_pte(stage, level, baseaddr,
pte_addr, pte, ipa, gpa,
block_size >> 20);
}
/*
* If S2AFFD and PTE.AF are 0 => fault. (5.2. Stream Table Entry)
* An Access fault takes priority over a Permission fault.
*/
if (!PTE_AF(pte) && !cfg->s2cfg.affd) {
info->type = SMMU_PTW_ERR_ACCESS;
goto error_ipa;
}
s2ap = PTE_AP(pte);
if (is_permission_fault_s2(s2ap, perm)) {
info->type = SMMU_PTW_ERR_PERMISSION;
goto error_ipa;
}
/*
* The address output from the translation causes a stage 2 Address
* Size fault if it exceeds the effective PA output range.
*/
if (gpa >= (1ULL << cfg->s2cfg.eff_ps)) {
info->type = SMMU_PTW_ERR_ADDR_SIZE;
goto error_ipa;
}
tlbe->entry.translated_addr = gpa;
tlbe->entry.iova = ipa & ~mask;
tlbe->entry.addr_mask = mask;
tlbe->parent_perm = s2ap;
tlbe->entry.perm = tlbe->parent_perm;
tlbe->level = level;
tlbe->granule = granule_sz;
return 0;
}
info->type = SMMU_PTW_ERR_TRANSLATION;
error_ipa:
info->addr = ipa;
error:
info->stage = SMMU_STAGE_2;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
/*
* combine S1 and S2 TLB entries into a single entry.
* As a result the S1 entry is overridden with combined data.
*/
static void combine_tlb(SMMUTLBEntry *tlbe, SMMUTLBEntry *tlbe_s2,
dma_addr_t iova, SMMUTransCfg *cfg)
{
if (tlbe_s2->entry.addr_mask < tlbe->entry.addr_mask) {
tlbe->entry.addr_mask = tlbe_s2->entry.addr_mask;
tlbe->granule = tlbe_s2->granule;
tlbe->level = tlbe_s2->level;
}
tlbe->entry.translated_addr = CACHED_ENTRY_TO_ADDR(tlbe_s2,
tlbe->entry.translated_addr);
tlbe->entry.iova = iova & ~tlbe->entry.addr_mask;
/* parent_perm has s2 perm while perm keeps s1 perm. */
tlbe->parent_perm = tlbe_s2->entry.perm;
return;
}
/**
* smmu_ptw - Walk the page tables for an IOVA, according to @cfg
*
* @bs: smmu state which includes TLB instance
* @cfg: translation configuration
* @iova: iova to translate
* @perm: tentative access type
* @tlbe: returned entry
* @info: ptw event handle
*
* return 0 on success
*/
int smmu_ptw(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t iova,
IOMMUAccessFlags perm, SMMUTLBEntry *tlbe, SMMUPTWEventInfo *info)
{
int ret;
SMMUTLBEntry tlbe_s2;
dma_addr_t ipa;
if (cfg->stage == SMMU_STAGE_1) {
return smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info);
} else if (cfg->stage == SMMU_STAGE_2) {
/*
* If bypassing stage 1(or unimplemented), the input address is passed
* directly to stage 2 as IPA. If the input address of a transaction
* exceeds the size of the IAS, a stage 1 Address Size fault occurs.
* For AA64, IAS = OAS according to (IHI 0070.E.a) "3.4 Address sizes"
*/
if (iova >= (1ULL << cfg->oas)) {
info->type = SMMU_PTW_ERR_ADDR_SIZE;
info->stage = SMMU_STAGE_1;
tlbe->entry.perm = IOMMU_NONE;
return -EINVAL;
}
return smmu_ptw_64_s2(cfg, iova, perm, tlbe, info);
}
/* SMMU_NESTED. */
ret = smmu_ptw_64_s1(bs, cfg, iova, perm, tlbe, info);
if (ret) {
return ret;
}
ipa = CACHED_ENTRY_TO_ADDR(tlbe, iova);
ret = smmu_ptw_64_s2(cfg, ipa, perm, &tlbe_s2, info);
if (ret) {
return ret;
}
combine_tlb(tlbe, &tlbe_s2, iova, cfg);
return 0;
}
SMMUTLBEntry *smmu_translate(SMMUState *bs, SMMUTransCfg *cfg, dma_addr_t addr,
IOMMUAccessFlags flag, SMMUPTWEventInfo *info)
{
SMMUTLBEntry *cached_entry = NULL;
SMMUTransTableInfo *tt;
int status;
/*
* Combined attributes used for TLB lookup, holds the attributes for
* the input stage.
*/
SMMUTransTableInfo tt_combined;
if (cfg->stage == SMMU_STAGE_2) {
/* Stage2. */
tt_combined.granule_sz = cfg->s2cfg.granule_sz;
tt_combined.tsz = cfg->s2cfg.tsz;
} else {
/* Select stage1 translation table. */
tt = select_tt(cfg, addr);
if (!tt) {
info->type = SMMU_PTW_ERR_TRANSLATION;
info->stage = SMMU_STAGE_1;
return NULL;
}
tt_combined.granule_sz = tt->granule_sz;
tt_combined.tsz = tt->tsz;
}
cached_entry = smmu_iotlb_lookup(bs, cfg, &tt_combined, addr);
if (cached_entry) {
if ((flag & IOMMU_WO) && !(cached_entry->entry.perm &
cached_entry->parent_perm & IOMMU_WO)) {
info->type = SMMU_PTW_ERR_PERMISSION;
info->stage = !(cached_entry->entry.perm & IOMMU_WO) ?
SMMU_STAGE_1 :
SMMU_STAGE_2;
return NULL;
}
return cached_entry;
}
cached_entry = g_new0(SMMUTLBEntry, 1);
status = smmu_ptw(bs, cfg, addr, flag, cached_entry, info);
if (status) {
g_free(cached_entry);
return NULL;
}
smmu_iotlb_insert(bs, cfg, cached_entry);
return cached_entry;
}
/**
* The bus number is used for lookup when SID based invalidation occurs.
* In that case we lazily populate the SMMUPciBus array from the bus hash
* table. At the time the SMMUPciBus is created (smmu_find_add_as), the bus
* numbers may not be always initialized yet.
*/
SMMUPciBus *smmu_find_smmu_pcibus(SMMUState *s, uint8_t bus_num)
{
SMMUPciBus *smmu_pci_bus = s->smmu_pcibus_by_bus_num[bus_num];
GHashTableIter iter;
if (smmu_pci_bus) {
return smmu_pci_bus;
}
g_hash_table_iter_init(&iter, s->smmu_pcibus_by_busptr);
while (g_hash_table_iter_next(&iter, NULL, (void **)&smmu_pci_bus)) {
if (pci_bus_num(smmu_pci_bus->bus) == bus_num) {
s->smmu_pcibus_by_bus_num[bus_num] = smmu_pci_bus;
return smmu_pci_bus;
}
}
return NULL;
}
static AddressSpace *smmu_find_add_as(PCIBus *bus, void *opaque, int devfn)
{
SMMUState *s = opaque;
SMMUPciBus *sbus = g_hash_table_lookup(s->smmu_pcibus_by_busptr, bus);
SMMUDevice *sdev;
static unsigned int index;
if (!sbus) {
sbus = g_malloc0(sizeof(SMMUPciBus) +
sizeof(SMMUDevice *) * SMMU_PCI_DEVFN_MAX);
sbus->bus = bus;
g_hash_table_insert(s->smmu_pcibus_by_busptr, bus, sbus);
}
sdev = sbus->pbdev[devfn];
if (!sdev) {
char *name = g_strdup_printf("%s-%d-%d", s->mrtypename, devfn, index++);
sdev = sbus->pbdev[devfn] = g_new0(SMMUDevice, 1);
sdev->smmu = s;
sdev->bus = bus;
sdev->devfn = devfn;
memory_region_init_iommu(&sdev->iommu, sizeof(sdev->iommu),
s->mrtypename,
OBJECT(s), name, UINT64_MAX);
address_space_init(&sdev->as,
MEMORY_REGION(&sdev->iommu), name);
trace_smmu_add_mr(name);
g_free(name);
}
return &sdev->as;
}
static const PCIIOMMUOps smmu_ops = {
.get_address_space = smmu_find_add_as,
};
SMMUDevice *smmu_find_sdev(SMMUState *s, uint32_t sid)
{
uint8_t bus_n, devfn;
SMMUPciBus *smmu_bus;
bus_n = PCI_BUS_NUM(sid);
smmu_bus = smmu_find_smmu_pcibus(s, bus_n);
if (smmu_bus) {
devfn = SMMU_PCI_DEVFN(sid);
return smmu_bus->pbdev[devfn];
}
return NULL;
}
/* Unmap all notifiers attached to @mr */
static void smmu_inv_notifiers_mr(IOMMUMemoryRegion *mr)
{
IOMMUNotifier *n;
trace_smmu_inv_notifiers_mr(mr->parent_obj.name);
IOMMU_NOTIFIER_FOREACH(n, mr) {
memory_region_unmap_iommu_notifier_range(n);
}
}
/* Unmap all notifiers of all mr's */
void smmu_inv_notifiers_all(SMMUState *s)
{
SMMUDevice *sdev;
QLIST_FOREACH(sdev, &s->devices_with_notifiers, next) {
smmu_inv_notifiers_mr(&sdev->iommu);
}
}
static void smmu_base_realize(DeviceState *dev, Error **errp)
{
SMMUState *s = ARM_SMMU(dev);
SMMUBaseClass *sbc = ARM_SMMU_GET_CLASS(dev);
Error *local_err = NULL;
sbc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
s->configs = g_hash_table_new_full(NULL, NULL, NULL, g_free);
s->iotlb = g_hash_table_new_full(smmu_iotlb_key_hash, smmu_iotlb_key_equal,
g_free, g_free);
s->smmu_pcibus_by_busptr = g_hash_table_new(NULL, NULL);
if (s->primary_bus) {
pci_setup_iommu(s->primary_bus, &smmu_ops, s);
} else {
error_setg(errp, "SMMU is not attached to any PCI bus!");
}
}
static void smmu_base_reset_hold(Object *obj, ResetType type)
{
SMMUState *s = ARM_SMMU(obj);
memset(s->smmu_pcibus_by_bus_num, 0, sizeof(s->smmu_pcibus_by_bus_num));
g_hash_table_remove_all(s->configs);
g_hash_table_remove_all(s->iotlb);
}
static Property smmu_dev_properties[] = {
DEFINE_PROP_UINT8("bus_num", SMMUState, bus_num, 0),
DEFINE_PROP_LINK("primary-bus", SMMUState, primary_bus,
TYPE_PCI_BUS, PCIBus *),
DEFINE_PROP_END_OF_LIST(),
};
static void smmu_base_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
SMMUBaseClass *sbc = ARM_SMMU_CLASS(klass);
device_class_set_props(dc, smmu_dev_properties);
device_class_set_parent_realize(dc, smmu_base_realize,
&sbc->parent_realize);
rc->phases.hold = smmu_base_reset_hold;
}
static const TypeInfo smmu_base_info = {
.name = TYPE_ARM_SMMU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SMMUState),
.class_data = NULL,
.class_size = sizeof(SMMUBaseClass),
.class_init = smmu_base_class_init,
.abstract = true,
};
static void smmu_base_register_types(void)
{
type_register_static(&smmu_base_info);
}
type_init(smmu_base_register_types)