You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/gdbstub/user.c

879 lines
23 KiB
C

/*
* gdbstub user-mode helper routines.
*
* We know for user-mode we are using TCG so we can call stuff directly.
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2022 Linaro Ltd
*
* SPDX-License-Identifier: LGPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/cutils.h"
#include "qemu/sockets.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/user.h"
#include "gdbstub/enums.h"
#include "hw/core/cpu.h"
#include "trace.h"
#include "internals.h"
#define GDB_NR_SYSCALLS 1024
typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];
/*
* Forked child talks to its parent in order to let GDB enforce the
* follow-fork-mode. This happens inside a start_exclusive() section, so that
* the other threads, which may be forking too, do not interfere. The
* implementation relies on GDB not sending $vCont until it has detached
* either from the parent (follow-fork-mode child) or from the child
* (follow-fork-mode parent).
*
* The parent and the child share the GDB socket; at any given time only one
* of them is allowed to use it, as is reflected in the respective fork_state.
* This is negotiated via the fork_sockets pair as a reaction to $Hg.
*
* Below is a short summary of the possible state transitions:
*
* ENABLED : Terminal state.
* DISABLED : Terminal state.
* ACTIVE : Parent initial state.
* INACTIVE : Child initial state.
* ACTIVE -> DEACTIVATING: On $Hg.
* ACTIVE -> ENABLING : On $D.
* ACTIVE -> DISABLING : On $D.
* ACTIVE -> DISABLED : On communication error.
* DEACTIVATING -> INACTIVE : On gdb_read_byte() return.
* DEACTIVATING -> DISABLED : On communication error.
* INACTIVE -> ACTIVE : On $Hg in the peer.
* INACTIVE -> ENABLE : On $D in the peer.
* INACTIVE -> DISABLE : On $D in the peer.
* INACTIVE -> DISABLED : On communication error.
* ENABLING -> ENABLED : On gdb_read_byte() return.
* ENABLING -> DISABLED : On communication error.
* DISABLING -> DISABLED : On gdb_read_byte() return.
*/
enum GDBForkState {
/* Fully owning the GDB socket. */
GDB_FORK_ENABLED,
/* Working with the GDB socket; the peer is inactive. */
GDB_FORK_ACTIVE,
/* Handing off the GDB socket to the peer. */
GDB_FORK_DEACTIVATING,
/* The peer is working with the GDB socket. */
GDB_FORK_INACTIVE,
/* Asking the peer to close its GDB socket fd. */
GDB_FORK_ENABLING,
/* Asking the peer to take over, closing our GDB socket fd. */
GDB_FORK_DISABLING,
/* The peer has taken over, our GDB socket fd is closed. */
GDB_FORK_DISABLED,
};
enum GDBForkMessage {
GDB_FORK_ACTIVATE = 'a',
GDB_FORK_ENABLE = 'e',
GDB_FORK_DISABLE = 'd',
};
/* User-mode specific state */
typedef struct {
int fd;
char *socket_path;
int running_state;
/*
* Store syscalls mask without memory allocation in order to avoid
* implementing synchronization.
*/
bool catch_all_syscalls;
GDBSyscallsMask catch_syscalls_mask;
bool fork_events;
enum GDBForkState fork_state;
int fork_sockets[2];
pid_t fork_peer_pid, fork_peer_tid;
uint8_t siginfo[MAX_SIGINFO_LENGTH];
unsigned long siginfo_len;
} GDBUserState;
static GDBUserState gdbserver_user_state;
int gdb_get_char(void)
{
uint8_t ch;
int ret;
for (;;) {
ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
if (ret < 0) {
if (errno == ECONNRESET) {
gdbserver_user_state.fd = -1;
}
if (errno != EINTR) {
return -1;
}
} else if (ret == 0) {
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
return -1;
} else {
break;
}
}
return ch;
}
bool gdb_got_immediate_ack(void)
{
int i;
i = gdb_get_char();
if (i < 0) {
/* no response, continue anyway */
return true;
}
if (i == '+') {
/* received correctly, continue */
return true;
}
/* anything else, including '-' then try again */
return false;
}
void gdb_put_buffer(const uint8_t *buf, int len)
{
int ret;
while (len > 0) {
ret = send(gdbserver_user_state.fd, buf, len, 0);
if (ret < 0) {
if (errno != EINTR) {
return;
}
} else {
buf += ret;
len -= ret;
}
}
}
/* Tell the remote gdb that the process has exited. */
void gdb_exit(int code)
{
char buf[4];
if (!gdbserver_state.init) {
return;
}
if (gdbserver_user_state.socket_path) {
unlink(gdbserver_user_state.socket_path);
}
if (gdbserver_user_state.fd < 0) {
return;
}
trace_gdbstub_op_exiting((uint8_t)code);
if (gdbserver_state.allow_stop_reply) {
snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
}
void gdb_qemu_exit(int code)
{
exit(code);
}
int gdb_handlesig(CPUState *cpu, int sig, const char *reason, void *siginfo,
int siginfo_len)
{
char buf[256];
int n;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return sig;
}
if (siginfo) {
/*
* Save target-specific siginfo.
*
* siginfo size, i.e. siginfo_len, is asserted at compile-time to fit in
* gdbserver_user_state.siginfo, usually in the source file calling
* gdb_handlesig. See, for instance, {linux,bsd}-user/signal.c.
*/
memcpy(gdbserver_user_state.siginfo, siginfo, siginfo_len);
gdbserver_user_state.siginfo_len = siginfo_len;
}
/* disable single step if it was enabled */
cpu_single_step(cpu, 0);
tb_flush(cpu);
if (sig != 0) {
gdb_set_stop_cpu(cpu);
if (gdbserver_state.allow_stop_reply) {
g_string_printf(gdbserver_state.str_buf,
"T%02xthread:", gdb_target_signal_to_gdb(sig));
gdb_append_thread_id(cpu, gdbserver_state.str_buf);
g_string_append_c(gdbserver_state.str_buf, ';');
if (reason) {
g_string_append(gdbserver_state.str_buf, reason);
}
gdb_put_strbuf();
gdbserver_state.allow_stop_reply = false;
}
}
/*
* gdb_put_packet() might have detected that the peer terminated the
* connection.
*/
if (gdbserver_user_state.fd < 0) {
return sig;
}
sig = 0;
gdbserver_state.state = RS_IDLE;
gdbserver_user_state.running_state = 0;
while (gdbserver_user_state.running_state == 0) {
n = read(gdbserver_user_state.fd, buf, 256);
if (n > 0) {
int i;
for (i = 0; i < n; i++) {
gdb_read_byte(buf[i]);
}
} else {
/*
* XXX: Connection closed. Should probably wait for another
* connection before continuing.
*/
if (n == 0) {
close(gdbserver_user_state.fd);
}
gdbserver_user_state.fd = -1;
return sig;
}
}
sig = gdbserver_state.signal;
gdbserver_state.signal = 0;
return sig;
}
/* Tell the remote gdb that the process has exited due to SIG. */
void gdb_signalled(CPUArchState *env, int sig)
{
char buf[4];
if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
!gdbserver_state.allow_stop_reply) {
return;
}
snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
gdb_put_packet(buf);
gdbserver_state.allow_stop_reply = false;
}
static void gdb_accept_init(int fd)
{
gdb_init_gdbserver_state();
gdb_create_default_process(&gdbserver_state);
gdbserver_state.processes[0].attached = true;
gdbserver_state.c_cpu = gdb_first_attached_cpu();
gdbserver_state.g_cpu = gdbserver_state.c_cpu;
gdbserver_user_state.fd = fd;
}
static bool gdb_accept_socket(int gdb_fd)
{
int fd;
for (;;) {
fd = accept(gdb_fd, NULL, NULL);
if (fd < 0 && errno != EINTR) {
perror("accept socket");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_socket(const char *path)
{
struct sockaddr_un sockaddr = {};
int fd, ret;
fd = socket(AF_UNIX, SOCK_STREAM, 0);
if (fd < 0) {
perror("create socket");
return -1;
}
sockaddr.sun_family = AF_UNIX;
pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
perror("bind socket");
close(fd);
return -1;
}
ret = listen(fd, 1);
if (ret < 0) {
perror("listen socket");
close(fd);
return -1;
}
return fd;
}
static bool gdb_accept_tcp(int gdb_fd)
{
struct sockaddr_in sockaddr = {};
socklen_t len;
int fd;
for (;;) {
len = sizeof(sockaddr);
fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
if (fd < 0 && errno != EINTR) {
perror("accept");
return false;
} else if (fd >= 0) {
qemu_set_cloexec(fd);
break;
}
}
/* set short latency */
if (socket_set_nodelay(fd)) {
perror("setsockopt");
close(fd);
return false;
}
gdb_accept_init(fd);
return true;
}
static int gdbserver_open_port(int port)
{
struct sockaddr_in sockaddr;
int fd, ret;
fd = socket(PF_INET, SOCK_STREAM, 0);
if (fd < 0) {
perror("socket");
return -1;
}
qemu_set_cloexec(fd);
socket_set_fast_reuse(fd);
sockaddr.sin_family = AF_INET;
sockaddr.sin_port = htons(port);
sockaddr.sin_addr.s_addr = 0;
ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
if (ret < 0) {
perror("bind");
close(fd);
return -1;
}
ret = listen(fd, 1);
if (ret < 0) {
perror("listen");
close(fd);
return -1;
}
return fd;
}
int gdbserver_start(const char *port_or_path)
{
int port = g_ascii_strtoull(port_or_path, NULL, 10);
int gdb_fd;
if (port > 0) {
gdb_fd = gdbserver_open_port(port);
} else {
gdb_fd = gdbserver_open_socket(port_or_path);
}
if (gdb_fd < 0) {
return -1;
}
if (port > 0 && gdb_accept_tcp(gdb_fd)) {
return 0;
} else if (gdb_accept_socket(gdb_fd)) {
gdbserver_user_state.socket_path = g_strdup(port_or_path);
return 0;
}
/* gone wrong */
close(gdb_fd);
return -1;
}
void gdbserver_fork_start(void)
{
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (!gdbserver_user_state.fork_events ||
qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
gdbserver_user_state.fork_sockets) < 0) {
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
return;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
gdbserver_user_state.fork_peer_pid = getpid();
gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
}
static void disable_gdbstub(CPUState *thread_cpu)
{
CPUState *cpu;
close(gdbserver_user_state.fd);
gdbserver_user_state.fd = -1;
CPU_FOREACH(cpu) {
cpu_breakpoint_remove_all(cpu, BP_GDB);
/* no cpu_watchpoint_remove_all for user-mode */
cpu_single_step(cpu, 0);
}
tb_flush(thread_cpu);
}
void gdbserver_fork_end(CPUState *cpu, pid_t pid)
{
char b;
int fd;
if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
return;
}
if (pid == -1) {
if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
close(gdbserver_user_state.fork_sockets[0]);
close(gdbserver_user_state.fork_sockets[1]);
}
return;
}
if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
if (pid == 0) {
disable_gdbstub(cpu);
}
return;
}
if (pid == 0) {
close(gdbserver_user_state.fork_sockets[0]);
fd = gdbserver_user_state.fork_sockets[1];
g_assert(gdbserver_state.process_num == 1);
g_assert(gdbserver_state.processes[0].pid ==
gdbserver_user_state.fork_peer_pid);
g_assert(gdbserver_state.processes[0].attached);
gdbserver_state.processes[0].pid = getpid();
} else {
close(gdbserver_user_state.fork_sockets[1]);
fd = gdbserver_user_state.fork_sockets[0];
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
gdbserver_user_state.fork_peer_pid = pid;
gdbserver_user_state.fork_peer_tid = pid;
if (!gdbserver_state.allow_stop_reply) {
goto fail;
}
g_string_printf(gdbserver_state.str_buf,
"T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
gdb_target_signal_to_gdb(gdb_target_sigtrap()),
pid, pid, (int)getpid(), qemu_get_thread_id());
gdb_put_strbuf();
}
gdbserver_state.state = RS_IDLE;
gdbserver_state.allow_stop_reply = false;
gdbserver_user_state.running_state = 0;
for (;;) {
switch (gdbserver_user_state.fork_state) {
case GDB_FORK_ENABLED:
if (gdbserver_user_state.running_state) {
close(fd);
return;
}
QEMU_FALLTHROUGH;
case GDB_FORK_ACTIVE:
if (read(gdbserver_user_state.fd, &b, 1) != 1) {
goto fail;
}
gdb_read_byte(b);
break;
case GDB_FORK_DEACTIVATING:
b = GDB_FORK_ACTIVATE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
break;
case GDB_FORK_INACTIVE:
if (read(fd, &b, 1) != 1) {
goto fail;
}
switch (b) {
case GDB_FORK_ACTIVATE:
gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
break;
case GDB_FORK_ENABLE:
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLE:
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
default:
g_assert_not_reached();
}
break;
case GDB_FORK_ENABLING:
b = GDB_FORK_DISABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
break;
case GDB_FORK_DISABLING:
b = GDB_FORK_ENABLE;
if (write(fd, &b, 1) != 1) {
goto fail;
}
gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
break;
case GDB_FORK_DISABLED:
close(fd);
disable_gdbstub(cpu);
return;
default:
g_assert_not_reached();
}
}
fail:
close(fd);
if (pid == 0) {
disable_gdbstub(cpu);
}
}
void gdb_handle_query_supported_user(const char *gdb_supported)
{
if (strstr(gdb_supported, "fork-events+")) {
gdbserver_user_state.fork_events = true;
}
g_string_append(gdbserver_state.str_buf, ";fork-events+");
}
bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
{
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
pid == gdbserver_user_state.fork_peer_pid &&
tid == gdbserver_user_state.fork_peer_tid) {
gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
gdb_put_packet("OK");
return true;
}
return false;
}
bool gdb_handle_detach_user(uint32_t pid)
{
bool enable;
if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
enable = pid == gdbserver_user_state.fork_peer_pid;
if (enable || pid == getpid()) {
gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
GDB_FORK_DISABLING;
gdb_put_packet("OK");
return true;
}
}
return false;
}
/*
* Execution state helpers
*/
void gdb_handle_query_attached(GArray *params, void *user_ctx)
{
gdb_put_packet("0");
}
void gdb_continue(void)
{
gdbserver_user_state.running_state = 1;
trace_gdbstub_op_continue();
}
/*
* Resume execution, for user-mode emulation it's equivalent to
* gdb_continue.
*/
int gdb_continue_partial(char *newstates)
{
CPUState *cpu;
int res = 0;
/*
* This is not exactly accurate, but it's an improvement compared to the
* previous situation, where only one CPU would be single-stepped.
*/
CPU_FOREACH(cpu) {
if (newstates[cpu->cpu_index] == 's') {
trace_gdbstub_op_stepping(cpu->cpu_index);
cpu_single_step(cpu, gdbserver_state.sstep_flags);
}
}
gdbserver_user_state.running_state = 1;
return res;
}
/*
* Memory access helpers
*/
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
uint8_t *buf, int len, bool is_write)
{
CPUClass *cc;
cc = CPU_GET_CLASS(cpu);
if (cc->memory_rw_debug) {
return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
}
return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}
/*
* cpu helpers
*/
unsigned int gdb_get_max_cpus(void)
{
CPUState *cpu;
unsigned int max_cpus = 1;
CPU_FOREACH(cpu) {
max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
}
return max_cpus;
}
/* replay not supported for user-mode */
bool gdb_can_reverse(void)
{
return false;
}
/*
* Break/Watch point helpers
*/
bool gdb_supports_guest_debug(void)
{
/* user-mode == TCG == supported */
return true;
}
int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
CPUState *cpu;
int err = 0;
switch (type) {
case GDB_BREAKPOINT_SW:
case GDB_BREAKPOINT_HW:
CPU_FOREACH(cpu) {
err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
if (err) {
break;
}
}
return err;
default:
/* user-mode doesn't support watchpoints */
return -ENOSYS;
}
}
void gdb_breakpoint_remove_all(CPUState *cs)
{
cpu_breakpoint_remove_all(cs, BP_GDB);
}
/*
* For user-mode syscall support we send the system call immediately
* and then return control to gdb for it to process the syscall request.
* Since the protocol requires that gdb hands control back to us
* using a "here are the results" F packet, we don't need to check
* gdb_handlesig's return value (which is the signal to deliver if
* execution was resumed via a continue packet).
*/
void gdb_syscall_handling(const char *syscall_packet)
{
gdb_put_packet(syscall_packet);
gdb_handlesig(gdbserver_state.c_cpu, 0, NULL, NULL, 0);
}
static bool should_catch_syscall(int num)
{
if (gdbserver_user_state.catch_all_syscalls) {
return true;
}
if (num < 0 || num >= GDB_NR_SYSCALLS) {
return false;
}
return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
}
void gdb_syscall_entry(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_syscall_return(CPUState *cs, int num)
{
if (should_catch_syscall(num)) {
g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
}
}
void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
{
const char *param = gdb_get_cmd_param(params, 0)->data;
GDBSyscallsMask catch_syscalls_mask;
bool catch_all_syscalls;
unsigned int num;
const char *p;
/* "0" means not catching any syscalls. */
if (strcmp(param, "0") == 0) {
gdbserver_user_state.catch_all_syscalls = false;
memset(gdbserver_user_state.catch_syscalls_mask, 0,
sizeof(gdbserver_user_state.catch_syscalls_mask));
gdb_put_packet("OK");
return;
}
/* "1" means catching all syscalls. */
if (strcmp(param, "1") == 0) {
gdbserver_user_state.catch_all_syscalls = true;
gdb_put_packet("OK");
return;
}
/*
* "1;..." means catching only the specified syscalls.
* The syscall list must not be empty.
*/
if (param[0] == '1' && param[1] == ';') {
catch_all_syscalls = false;
memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
for (p = &param[2];; p++) {
if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
goto err;
}
if (num >= GDB_NR_SYSCALLS) {
/*
* Fall back to reporting all syscalls. Reporting extra
* syscalls is inefficient, but the spec explicitly allows it.
* Keep parsing in case there is a syntax error ahead.
*/
catch_all_syscalls = true;
} else {
set_bit(num, catch_syscalls_mask);
}
if (!*p) {
break;
}
}
gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
if (!catch_all_syscalls) {
memcpy(gdbserver_user_state.catch_syscalls_mask,
catch_syscalls_mask, sizeof(catch_syscalls_mask));
}
gdb_put_packet("OK");
return;
}
err:
gdb_put_packet("E00");
}
void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx)
{
unsigned long offset, len;
uint8_t *siginfo_offset;
offset = gdb_get_cmd_param(params, 0)->val_ul;
len = gdb_get_cmd_param(params, 1)->val_ul;
if (offset + len > gdbserver_user_state.siginfo_len) {
/* Invalid offset and/or requested length. */
gdb_put_packet("E01");
return;
}
siginfo_offset = (uint8_t *)gdbserver_user_state.siginfo + offset;
/* Reply */
g_string_assign(gdbserver_state.str_buf, "l");
gdb_memtox(gdbserver_state.str_buf, (const char *)siginfo_offset, len);
gdb_put_packet_binary(gdbserver_state.str_buf->str,
gdbserver_state.str_buf->len, true);
}