You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/contrib/plugins/uftrace.c

879 lines
25 KiB
C

/*
* Copyright (C) 2025, Pierrick Bouvier <pierrick.bouvier@linaro.org>
*
* Generates a trace compatible with uftrace (similar to uftrace record).
* https://github.com/namhyung/uftrace
*
* See docs/about/emulation.rst|Uftrace for details and examples.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include <qemu-plugin.h>
#include <glib.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>
#define MiB (INT64_C(1) << 20)
#define NANOSECONDS_PER_SECOND 1000000000LL
#define TRACE_FLUSH_SIZE (32 * MiB)
#define TRACE_ID_SCALE 100
QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION;
typedef struct {
GArray *s;
} Callstack;
typedef struct {
uint64_t pc;
uint64_t frame_pointer;
} CallstackEntry;
typedef struct {
GArray *t;
GString *path;
GString *name;
uint32_t id;
} Trace;
typedef struct Cpu Cpu;
typedef struct {
void (*init)(Cpu *cpu);
void (*end)(Cpu *cpu);
uint64_t (*get_frame_pointer)(Cpu *cpu);
uint8_t (*get_privilege_level)(Cpu *cpu);
uint8_t (*num_privilege_levels)(void);
const char *(*get_privilege_level_name)(uint8_t pl);
bool (*does_insn_modify_frame_pointer)(const char *disas);
} CpuOps;
typedef struct Cpu {
Trace *trace;
Callstack *cs;
uint8_t privilege_level;
GArray *traces; /* Trace *traces [] */
GByteArray *buf;
CpuOps ops;
void *arch;
} Cpu;
typedef enum {
AARCH64_EL0_SECURE,
AARCH64_EL0_NONSECURE,
AARCH64_EL0_REALM,
AARCH64_EL1_SECURE,
AARCH64_EL1_NONSECURE,
AARCH64_EL1_REALM,
AARCH64_EL2_SECURE,
AARCH64_EL2_NONSECURE,
AARCH64_EL2_REALM,
AARCH64_EL3,
AARCH64_PRIVILEGE_LEVEL_MAX,
} Aarch64PrivilegeLevel;
typedef struct {
struct qemu_plugin_register *reg_fp;
struct qemu_plugin_register *reg_cpsr;
struct qemu_plugin_register *reg_scr_el3;
} Aarch64Cpu;
typedef enum {
X64_RING0,
X64_RING1,
X64_RING2,
X64_RING3,
X64_REAL_MODE,
X64_PRIVILEGE_LEVEL_MAX,
} X64PrivilegeLevel;
typedef struct {
struct qemu_plugin_register *reg_rbp;
struct qemu_plugin_register *reg_cs;
struct qemu_plugin_register *reg_cr0;
} X64Cpu;
typedef struct {
uint64_t timestamp;
uint64_t data;
} UftraceEntry;
typedef enum {
UFTRACE_ENTRY,
UFTRACE_EXIT,
UFTRACE_LOST,
UFTRACE_EVENT,
} UftraceRecordType;
static struct qemu_plugin_scoreboard *score;
static bool trace_privilege_level;
static CpuOps arch_ops;
static uint64_t gettime_ns(void)
{
#ifdef _WIN32
/*
* On Windows, timespec_get is available only with UCRT, but not with
* MinGW64 environment. Simplify by using only gettimeofday on this
* platform. This may result in a precision loss.
*/
struct timeval tv;
gettimeofday(&tv, NULL);
uint64_t now_ns = tv.tv_sec * NANOSECONDS_PER_SECOND + tv.tv_usec * 1000;
#else
/* We need nanosecond precision for short lived functions. */
struct timespec ts;
timespec_get(&ts, TIME_UTC);
uint64_t now_ns = ts.tv_sec * NANOSECONDS_PER_SECOND + ts.tv_nsec;
#endif
return now_ns;
}
static void uftrace_write_map(bool system_emulation)
{
const char *path = "./uftrace.data/sid-0.map";
if (system_emulation && access(path, F_OK) == 0) {
/* do not erase existing map in system emulation, as a custom one might
* already have been generated by uftrace_symbols.py */
return;
}
FILE *sid_map = fopen(path, "w");
g_assert(sid_map);
if (system_emulation) {
fprintf(sid_map,
"# map stack on highest address possible, to prevent uftrace\n"
"# from considering any kernel address\n");
fprintf(sid_map,
"ffffffffffff-ffffffffffff rw-p 00000000 00:00 0 [stack]\n");
} else {
/* in user mode, copy /proc/self/maps instead */
FILE *self_map = fopen("/proc/self/maps", "r");
g_assert(self_map);
for (;;) {
int c = fgetc(self_map);
if (c == EOF) {
break;
}
fputc(c, sid_map);
}
fclose(self_map);
}
fclose(sid_map);
}
static void uftrace_write_task(const GArray *traces)
{
FILE *task = fopen("./uftrace.data/task.txt", "w");
g_assert(task);
for (int i = 0; i < traces->len; ++i) {
Trace *t = g_array_index(traces, Trace*, i);
fprintf(task, "SESS timestamp=0.0 pid=%"PRIu32" sid=0 exename=\"%s\"\n",
t->id, t->name->str);
fprintf(task, "TASK timestamp=0.0 tid=%"PRIu32" pid=%"PRIu32"\n",
t->id, t->id);
}
fclose(task);
}
static void uftrace_write_info(const GArray *traces)
{
g_autoptr(GString) taskinfo_tids = g_string_new("taskinfo:tids=");
for (int i = 0; i < traces->len; ++i) {
Trace *t = g_array_index(traces, Trace*, i);
const char *delim = i > 0 ? "," : "";
g_string_append_printf(taskinfo_tids, "%s%"PRIu32, delim, t->id);
}
g_autoptr(GString) taskinfo_nr_tid = g_string_new("taskinfo:nr_tid=");
g_string_append_printf(taskinfo_nr_tid, "%d", traces->len);
FILE *info = fopen("./uftrace.data/info", "w");
g_assert(info);
/*
* $ uftrace dump --debug
* uftrace file header: magic = 4674726163652100
* uftrace file header: version = 4
* uftrace file header: header size = 40
* uftrace file header: endian = 1 (little)
* uftrace file header: class = 2 (64 bit)
* uftrace file header: features = 0x1263 (PLTHOOK | ...
* uftrace file header: info = 0x7bff (EXE_NAME | ...
* <0000000000000000>: 46 74 72 61 63 65 21 00 04 00 00 00 28 00 01 02
* <0000000000000010>: 63 12 00 00 00 00 00 00 ff 7b 00 00 00 00 00 00
* <0000000000000020>: 00 04 00 00 00 00 00 00
*/
const uint8_t header[] = {0x46, 0x74, 0x72, 0x61, 0x63, 0x65, 0x21, 0x00,
0x04, 0x00, 0x00, 0x00, 0x28, 0x00, 0x01, 0x02,
0x63, 0x12, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0x7b, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
size_t wrote = fwrite(header, sizeof(header), 1, info);
g_assert(wrote == 1);
const char *info_data[] = {
"exename:",
"build_id:0000000000000000000000000000000000000000",
"exit_status:",
"cmdline:",
"cpuinfo:lines=2",
"cpuinfo:nr_cpus=",
"cpuinfo:desc=",
"meminfo:",
"osinfo:lines=3",
"osinfo:kernel=",
"osinfo:hostname=",
"osinfo:distro=",
"taskinfo:lines=2",
taskinfo_nr_tid->str,
taskinfo_tids->str,
"usageinfo:lines=6",
"usageinfo:systime=",
"usageinfo:usrtime=",
"usageinfo:ctxsw=",
"usageinfo:maxrss=",
"usageinfo:pagefault=",
"usageinfo:iops=",
"loadinfo:",
"record_date:",
"elapsed_time:",
"pattern_type:regex",
"uftrace_version:",
"utc_offset:",
0};
const char **info_data_it = info_data;
while (*(info_data_it)) {
fprintf(info, "%s\n", *info_data_it);
++info_data_it;
}
fclose(info);
}
static Callstack *callstack_new(void)
{
Callstack *cs = g_new0(Callstack, 1);
cs->s = g_array_new(false, false, sizeof(CallstackEntry));
return cs;
}
static void callstack_free(Callstack *cs)
{
g_array_free(cs->s, true);
cs->s = NULL;
g_free(cs);
}
static size_t callstack_depth(const Callstack *cs)
{
return cs->s->len;
}
static size_t callstack_empty(const Callstack *cs)
{
return callstack_depth(cs) == 0;
}
static void callstack_clear(Callstack *cs)
{
g_array_set_size(cs->s, 0);
}
static const CallstackEntry *callstack_at(const Callstack *cs, size_t depth)
{
g_assert(depth > 0);
g_assert(depth <= callstack_depth(cs));
return &g_array_index(cs->s, CallstackEntry, depth - 1);
}
static CallstackEntry callstack_top(const Callstack *cs)
{
if (callstack_depth(cs) >= 1) {
return *callstack_at(cs, callstack_depth(cs));
}
return (CallstackEntry){};
}
static CallstackEntry callstack_caller(const Callstack *cs)
{
if (callstack_depth(cs) >= 2) {
return *callstack_at(cs, callstack_depth(cs) - 1);
}
return (CallstackEntry){};
}
static void callstack_push(Callstack *cs, CallstackEntry e)
{
g_array_append_val(cs->s, e);
}
static CallstackEntry callstack_pop(Callstack *cs)
{
g_assert(!callstack_empty(cs));
CallstackEntry e = callstack_top(cs);
g_array_set_size(cs->s, callstack_depth(cs) - 1);
return e;
}
static Trace *trace_new(uint32_t id, GString *name)
{
Trace *t = g_new0(Trace, 1);
t->t = g_array_new(false, false, sizeof(UftraceEntry));
t->path = g_string_new(NULL);
g_string_append_printf(t->path, "./uftrace.data/%"PRIu32".dat", id);
t->name = g_string_new(name->str);
t->id = id;
return t;
}
static void trace_free(Trace *t)
{
g_assert(t->t->len == 0);
g_array_free(t->t, true);
t->t = NULL;
g_string_free(t->path, true);
t->path = NULL;
g_string_free(t->name, true);
t->name = NULL;
g_free(t);
}
static void trace_flush(Trace *t, bool append)
{
int create_dir = g_mkdir_with_parents("./uftrace.data",
S_IRWXU | S_IRWXG | S_IRWXO);
g_assert(create_dir == 0);
FILE *dat = fopen(t->path->str, append ? "a" : "w");
g_assert(dat);
GArray *data = t->t;
if (data->len) {
size_t wrote = fwrite(data->data, sizeof(UftraceEntry), data->len, dat);
g_assert(wrote == data->len);
}
fclose(dat);
g_array_set_size(data, 0);
}
static void trace_add_entry(Trace *t, uint64_t timestamp, uint64_t pc,
size_t depth, UftraceRecordType type)
{
/* https://github.com/namhyung/uftrace/blob/v0.18/libmcount/record.c#L909 */
const uint64_t record_magic = 0x5;
uint64_t data = type | (record_magic << 3);
data += depth << 6;
data += pc << 16;
UftraceEntry e = {.timestamp = timestamp, .data = data};
g_array_append_val(t->t, e);
if (t->t->len * sizeof(UftraceEntry) > TRACE_FLUSH_SIZE) {
trace_flush(t, true);
}
}
static void trace_enter_function(Trace *t, uint64_t timestamp,
uint64_t pc, size_t depth)
{
trace_add_entry(t, timestamp, pc, depth, UFTRACE_ENTRY);
}
static void trace_exit_function(Trace *t, uint64_t timestamp,
uint64_t pc, size_t depth)
{
trace_add_entry(t, timestamp, pc, depth, UFTRACE_EXIT);
}
static void trace_enter_stack(Trace *t, Callstack *cs, uint64_t timestamp)
{
for (size_t depth = 1; depth <= callstack_depth(cs); ++depth) {
trace_enter_function(t, timestamp, callstack_at(cs, depth)->pc, depth);
}
}
static void trace_exit_stack(Trace *t, Callstack *cs, uint64_t timestamp)
{
for (size_t depth = callstack_depth(cs); depth > 0; --depth) {
trace_exit_function(t, timestamp, callstack_at(cs, depth)->pc, depth);
}
}
static uint64_t cpu_read_register64(Cpu *cpu, struct qemu_plugin_register *reg)
{
GByteArray *buf = cpu->buf;
g_byte_array_set_size(buf, 0);
size_t sz = qemu_plugin_read_register(reg, buf);
g_assert(sz == 8);
g_assert(buf->len == 8);
return *((uint64_t *) buf->data);
}
static uint32_t cpu_read_register32(Cpu *cpu, struct qemu_plugin_register *reg)
{
GByteArray *buf = cpu->buf;
g_byte_array_set_size(buf, 0);
size_t sz = qemu_plugin_read_register(reg, buf);
g_assert(sz == 4);
g_assert(buf->len == 4);
return *((uint32_t *) buf->data);
}
static uint64_t cpu_read_memory64(Cpu *cpu, uint64_t addr)
{
g_assert(addr);
GByteArray *buf = cpu->buf;
g_byte_array_set_size(buf, 0);
bool read = qemu_plugin_read_memory_vaddr(addr, buf, 8);
if (!read) {
return 0;
}
g_assert(buf->len == 8);
return *((uint64_t *) buf->data);
}
static void cpu_unwind_stack(Cpu *cpu, uint64_t frame_pointer, uint64_t pc)
{
g_assert(callstack_empty(cpu->cs));
#define UNWIND_STACK_MAX_DEPTH 1024
CallstackEntry unwind[UNWIND_STACK_MAX_DEPTH];
size_t depth = 0;
do {
/* check we don't have an infinite stack */
for (size_t i = 0; i < depth; ++i) {
if (frame_pointer == unwind[i].frame_pointer) {
break;
}
}
CallstackEntry e = {.frame_pointer = frame_pointer, .pc = pc};
unwind[depth] = e;
depth++;
if (frame_pointer) {
frame_pointer = cpu_read_memory64(cpu, frame_pointer);
}
pc = cpu_read_memory64(cpu, frame_pointer + 8); /* read previous lr */
} while (frame_pointer && pc && depth < UNWIND_STACK_MAX_DEPTH);
#undef UNWIND_STACK_MAX_DEPTH
/* push it from bottom to top */
while (depth) {
callstack_push(cpu->cs, unwind[depth - 1]);
--depth;
}
}
static struct qemu_plugin_register *plugin_find_register(const char *name)
{
g_autoptr(GArray) regs = qemu_plugin_get_registers();
for (int i = 0; i < regs->len; ++i) {
qemu_plugin_reg_descriptor *reg;
reg = &g_array_index(regs, qemu_plugin_reg_descriptor, i);
if (!strcmp(reg->name, name)) {
return reg->handle;
}
}
return NULL;
}
static uint8_t aarch64_num_privilege_levels(void)
{
return AARCH64_PRIVILEGE_LEVEL_MAX;
}
static const char *aarch64_get_privilege_level_name(uint8_t pl)
{
switch (pl) {
case AARCH64_EL0_SECURE: return "S-EL0";
case AARCH64_EL0_NONSECURE: return "NS-EL0";
case AARCH64_EL0_REALM: return "R-EL0";
case AARCH64_EL1_SECURE: return "S-EL1";
case AARCH64_EL1_NONSECURE: return "NS-EL1";
case AARCH64_EL1_REALM: return "R-EL1";
case AARCH64_EL2_SECURE: return "S-EL2";
case AARCH64_EL2_NONSECURE: return "NS-EL2";
case AARCH64_EL2_REALM: return "R-EL2";
case AARCH64_EL3: return "EL3";
default:
g_assert_not_reached();
}
}
static uint8_t aarch64_get_privilege_level(Cpu *cpu_)
{
Aarch64Cpu *cpu = cpu_->arch;
/*
* QEMU gdbstub does not provide access to CurrentEL,
* so we use CPSR instead.
*/
uint8_t el = cpu_read_register32(cpu_, cpu->reg_cpsr) >> 2 & 0b11;
if (el == 3) {
return AARCH64_EL3;
}
uint8_t ss = AARCH64_EL0_SECURE;
if (!cpu->reg_scr_el3) {
ss = AARCH64_EL0_NONSECURE;
}
uint64_t scr_el3 = cpu_read_register64(cpu_, cpu->reg_scr_el3);
uint64_t ns = (scr_el3 >> 0) & 0b1;
uint64_t nse = (scr_el3 >> 62) & 0b1;
switch (nse << 1 | ns) {
case 0b00:
ss = AARCH64_EL0_SECURE;
break;
case 0b01:
ss = AARCH64_EL0_NONSECURE;
break;
case 0b11:
ss = AARCH64_EL0_REALM;
break;
default:
g_assert_not_reached();
}
const uint8_t num_ss = 3;
Aarch64PrivilegeLevel pl = el * num_ss + ss;
return pl;
}
static uint64_t aarch64_get_frame_pointer(Cpu *cpu_)
{
Aarch64Cpu *cpu = cpu_->arch;
return cpu_read_register64(cpu_, cpu->reg_fp);
}
static void aarch64_init(Cpu *cpu_)
{
Aarch64Cpu *cpu = g_new0(Aarch64Cpu, 1);
cpu_->arch = cpu;
cpu->reg_fp = plugin_find_register("x29");
if (!cpu->reg_fp) {
fprintf(stderr, "uftrace plugin: frame pointer register (x29) is not "
"available. Please use an AArch64 cpu (or -cpu max).\n");
g_abort();
}
cpu->reg_cpsr = plugin_find_register("cpsr");
g_assert(cpu->reg_cpsr);
cpu->reg_scr_el3 = plugin_find_register("SCR_EL3");
/* scr_el3 is optional */
}
static void aarch64_end(Cpu *cpu)
{
g_free(cpu->arch);
}
static bool aarch64_does_insn_modify_frame_pointer(const char *disas)
{
/*
* Check if current instruction concerns fp register "x29".
* We add a prefix space to make sure we don't match addresses dump
* in disassembly.
*/
return strstr(disas, " x29");
}
static CpuOps aarch64_ops = {
.init = aarch64_init,
.end = aarch64_end,
.get_frame_pointer = aarch64_get_frame_pointer,
.get_privilege_level = aarch64_get_privilege_level,
.num_privilege_levels = aarch64_num_privilege_levels,
.get_privilege_level_name = aarch64_get_privilege_level_name,
.does_insn_modify_frame_pointer = aarch64_does_insn_modify_frame_pointer,
};
static uint8_t x64_num_privilege_levels(void)
{
return X64_PRIVILEGE_LEVEL_MAX;
}
static const char *x64_get_privilege_level_name(uint8_t pl)
{
switch (pl) {
case X64_RING0: return "Ring0";
case X64_RING1: return "Ring1";
case X64_RING2: return "Ring2";
case X64_RING3: return "Ring3";
case X64_REAL_MODE: return "RealMode";
default:
g_assert_not_reached();
}
}
static uint8_t x64_get_privilege_level(Cpu *cpu_)
{
X64Cpu *cpu = cpu_->arch;
uint64_t cr0 = cpu_read_register64(cpu_, cpu->reg_cr0);
uint64_t protected_mode = (cr0 >> 0) & 0b1;
if (!protected_mode) {
return X64_REAL_MODE;
}
uint32_t cs = cpu_read_register32(cpu_, cpu->reg_cs);
uint32_t ring_level = (cs >> 0) & 0b11;
return ring_level;
}
static uint64_t x64_get_frame_pointer(Cpu *cpu_)
{
X64Cpu *cpu = cpu_->arch;
return cpu_read_register64(cpu_, cpu->reg_rbp);
}
static void x64_init(Cpu *cpu_)
{
X64Cpu *cpu = g_new0(X64Cpu, 1);
cpu_->arch = cpu;
cpu->reg_rbp = plugin_find_register("rbp");
g_assert(cpu->reg_rbp);
cpu->reg_cs = plugin_find_register("cs");
g_assert(cpu->reg_cs);
cpu->reg_cr0 = plugin_find_register("cr0");
g_assert(cpu->reg_cr0);
}
static void x64_end(Cpu *cpu)
{
g_free(cpu->arch);
}
static bool x64_does_insn_modify_frame_pointer(const char *disas)
{
return strstr(disas, "rbp");
}
static CpuOps x64_ops = {
.init = x64_init,
.end = x64_end,
.get_frame_pointer = x64_get_frame_pointer,
.get_privilege_level = x64_get_privilege_level,
.num_privilege_levels = x64_num_privilege_levels,
.get_privilege_level_name = x64_get_privilege_level_name,
.does_insn_modify_frame_pointer = x64_does_insn_modify_frame_pointer,
};
static void track_privilege_change(unsigned int cpu_index, void *udata)
{
Cpu *cpu = qemu_plugin_scoreboard_find(score, cpu_index);
uint8_t new_pl = cpu->ops.get_privilege_level(cpu);
if (new_pl == cpu->privilege_level) {
return;
}
uint64_t pc = (uintptr_t) udata;
uint64_t timestamp = gettime_ns();
trace_exit_stack(cpu->trace, cpu->cs, timestamp);
callstack_clear(cpu->cs);
cpu->privilege_level = new_pl;
cpu->trace = g_array_index(cpu->traces, Trace*, new_pl);
cpu_unwind_stack(cpu, cpu->ops.get_frame_pointer(cpu), pc);
trace_enter_stack(cpu->trace, cpu->cs, timestamp);
}
static void track_callstack(unsigned int cpu_index, void *udata)
{
uint64_t pc = (uintptr_t) udata;
Cpu *cpu = qemu_plugin_scoreboard_find(score, cpu_index);
uint64_t timestamp = gettime_ns();
Callstack *cs = cpu->cs;
Trace *t = cpu->trace;
uint64_t fp = cpu->ops.get_frame_pointer(cpu);
if (!fp && callstack_empty(cs)) {
/*
* We simply push current pc. Note that we won't detect symbol change as
* long as a proper call does not happen.
*/
callstack_push(cs, (CallstackEntry){.frame_pointer = fp, .pc = pc});
trace_enter_function(t, timestamp, pc, callstack_depth(cs));
return;
}
CallstackEntry top = callstack_top(cs);
if (fp == top.frame_pointer) {
/* same function */
return;
}
CallstackEntry caller = callstack_caller(cs);
if (fp == caller.frame_pointer) {
/* return */
CallstackEntry e = callstack_pop(cs);
trace_exit_function(t, timestamp, e.pc, callstack_depth(cs));
return;
}
uint64_t caller_fp = fp ? cpu_read_memory64(cpu, fp) : 0;
if (caller_fp == top.frame_pointer) {
/* call */
callstack_push(cs, (CallstackEntry){.frame_pointer = fp, .pc = pc});
trace_enter_function(t, timestamp, pc, callstack_depth(cs));
return;
}
/* discontinuity, exit current stack and unwind new one */
trace_exit_stack(t, cs, timestamp);
callstack_clear(cs);
cpu_unwind_stack(cpu, fp, pc);
trace_enter_stack(t, cs, timestamp);
}
static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb)
{
size_t n_insns = qemu_plugin_tb_n_insns(tb);
uintptr_t tb_pc = qemu_plugin_tb_vaddr(tb);
if (trace_privilege_level) {
qemu_plugin_register_vcpu_tb_exec_cb(tb, track_privilege_change,
QEMU_PLUGIN_CB_R_REGS,
(void *) tb_pc);
}
/*
* Callbacks and inline instrumentation are inserted before an instruction.
* Thus, to see instruction effect, we need to wait for next one.
* Potentially, the last instruction of a block could modify the frame
* pointer. Thus, we need to always instrument first instruction in a tb.
*/
bool instrument_insn = true;
for (size_t i = 0; i < n_insns; i++) {
struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i);
if (instrument_insn) {
uintptr_t pc = qemu_plugin_insn_vaddr(insn);
qemu_plugin_register_vcpu_insn_exec_cb(insn, track_callstack,
QEMU_PLUGIN_CB_R_REGS,
(void *) pc);
instrument_insn = false;
}
char *disas = qemu_plugin_insn_disas(insn);
if (arch_ops.does_insn_modify_frame_pointer(disas)) {
instrument_insn = true;
}
}
}
static void vcpu_init(qemu_plugin_id_t id, unsigned int vcpu_index)
{
Cpu *cpu = qemu_plugin_scoreboard_find(score, vcpu_index);
cpu->ops = arch_ops;
cpu->ops.init(cpu);
cpu->buf = g_byte_array_new();
cpu->traces = g_array_new(0, 0, sizeof(Trace *));
g_assert(vcpu_index < UINT32_MAX / TRACE_ID_SCALE);
g_assert(cpu->ops.num_privilege_levels() < TRACE_ID_SCALE);
/* trace_id is: cpu_number * TRACE_ID_SCALE + privilege_level */
uint32_t trace_id = (vcpu_index + 1) * TRACE_ID_SCALE;
if (trace_privilege_level) {
for (uint8_t pl = 0; pl < cpu->ops.num_privilege_levels(); ++pl) {
g_autoptr(GString) trace_name = g_string_new(NULL);
g_string_append_printf(trace_name, "cpu%u %s", vcpu_index,
cpu->ops.get_privilege_level_name(pl));
Trace *t = trace_new(trace_id + pl, trace_name);
g_array_append_val(cpu->traces, t);
}
} else {
g_autoptr(GString) trace_name = g_string_new(NULL);
g_string_append_printf(trace_name, "cpu%u", vcpu_index);
Trace *t = trace_new(trace_id, trace_name);
g_array_append_val(cpu->traces, t);
}
for (size_t i = 0; i < cpu->traces->len; ++i) {
/* create/truncate trace files */
Trace *t = g_array_index(cpu->traces, Trace*, i);
trace_flush(t, false);
}
cpu->cs = callstack_new();
cpu->trace = g_array_index(cpu->traces, Trace*, cpu->privilege_level);
}
static void vcpu_end(unsigned int vcpu_index)
{
Cpu *cpu = qemu_plugin_scoreboard_find(score, vcpu_index);
g_byte_array_free(cpu->buf, true);
for (size_t i = 0; i < cpu->traces->len; ++i) {
Trace *t = g_array_index(cpu->traces, Trace*, i);
trace_free(t);
}
g_array_free(cpu->traces, true);
callstack_free(cpu->cs);
memset(cpu, 0, sizeof(Cpu));
}
static void at_exit(qemu_plugin_id_t id, void *data)
{
bool system_emulation = (bool) data;
g_autoptr(GArray) traces = g_array_new(0, 0, sizeof(Trace *));
for (size_t i = 0; i < qemu_plugin_num_vcpus(); ++i) {
Cpu *cpu = qemu_plugin_scoreboard_find(score, i);
for (size_t j = 0; j < cpu->traces->len; ++j) {
Trace *t = g_array_index(cpu->traces, Trace*, j);
trace_flush(t, true);
g_array_append_val(traces, t);
}
}
uftrace_write_map(system_emulation);
uftrace_write_info(traces);
uftrace_write_task(traces);
for (size_t i = 0; i < qemu_plugin_num_vcpus(); ++i) {
vcpu_end(i);
}
qemu_plugin_scoreboard_free(score);
}
QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id,
const qemu_info_t *info,
int argc, char **argv)
{
for (int i = 0; i < argc; i++) {
char *opt = argv[i];
g_auto(GStrv) tokens = g_strsplit(opt, "=", 2);
if (g_strcmp0(tokens[0], "trace-privilege-level") == 0) {
if (!qemu_plugin_bool_parse(tokens[0], tokens[1],
&trace_privilege_level)) {
fprintf(stderr, "boolean argument parsing failed: %s\n", opt);
return -1;
}
} else {
fprintf(stderr, "option parsing failed: %s\n", opt);
return -1;
}
}
if (!strcmp(info->target_name, "aarch64")) {
arch_ops = aarch64_ops;
} else if (!strcmp(info->target_name, "x86_64")) {
arch_ops = x64_ops;
} else {
fprintf(stderr, "plugin uftrace: %s target is not supported\n",
info->target_name);
return 1;
}
score = qemu_plugin_scoreboard_new(sizeof(Cpu));
qemu_plugin_register_vcpu_init_cb(id, vcpu_init);
qemu_plugin_register_atexit_cb(id, at_exit, (void *) info->system_emulation);
qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans);
return 0;
}