|
|
/*
|
|
|
* block_copy API
|
|
|
*
|
|
|
* Copyright (C) 2013 Proxmox Server Solutions
|
|
|
* Copyright (c) 2019 Virtuozzo International GmbH.
|
|
|
*
|
|
|
* Authors:
|
|
|
* Dietmar Maurer (dietmar@proxmox.com)
|
|
|
* Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
|
|
|
*
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
*/
|
|
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
|
|
#include "trace.h"
|
|
|
#include "qapi/error.h"
|
|
|
#include "block/block-copy.h"
|
|
|
#include "block/block_int-io.h"
|
|
|
#include "block/dirty-bitmap.h"
|
|
|
#include "block/reqlist.h"
|
|
|
#include "sysemu/block-backend.h"
|
|
|
#include "qemu/units.h"
|
|
|
#include "qemu/co-shared-resource.h"
|
|
|
#include "qemu/coroutine.h"
|
|
|
#include "qemu/ratelimit.h"
|
|
|
#include "block/aio_task.h"
|
|
|
#include "qemu/error-report.h"
|
|
|
#include "qemu/memalign.h"
|
|
|
|
|
|
#define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB)
|
|
|
#define BLOCK_COPY_MAX_BUFFER (1 * MiB)
|
|
|
#define BLOCK_COPY_MAX_MEM (128 * MiB)
|
|
|
#define BLOCK_COPY_MAX_WORKERS 64
|
|
|
#define BLOCK_COPY_SLICE_TIME 100000000ULL /* ns */
|
|
|
#define BLOCK_COPY_CLUSTER_SIZE_DEFAULT (1 << 16)
|
|
|
|
|
|
typedef enum {
|
|
|
COPY_READ_WRITE_CLUSTER,
|
|
|
COPY_READ_WRITE,
|
|
|
COPY_WRITE_ZEROES,
|
|
|
COPY_RANGE_SMALL,
|
|
|
COPY_RANGE_FULL
|
|
|
} BlockCopyMethod;
|
|
|
|
|
|
static coroutine_fn int block_copy_task_entry(AioTask *task);
|
|
|
|
|
|
typedef struct BlockCopyCallState {
|
|
|
/* Fields initialized in block_copy_async() and never changed. */
|
|
|
BlockCopyState *s;
|
|
|
int64_t offset;
|
|
|
int64_t bytes;
|
|
|
int max_workers;
|
|
|
int64_t max_chunk;
|
|
|
bool ignore_ratelimit;
|
|
|
BlockCopyAsyncCallbackFunc cb;
|
|
|
void *cb_opaque;
|
|
|
/* Coroutine where async block-copy is running */
|
|
|
Coroutine *co;
|
|
|
|
|
|
/* Fields whose state changes throughout the execution */
|
|
|
bool finished; /* atomic */
|
|
|
QemuCoSleep sleep; /* TODO: protect API with a lock */
|
|
|
bool cancelled; /* atomic */
|
|
|
/* To reference all call states from BlockCopyState */
|
|
|
QLIST_ENTRY(BlockCopyCallState) list;
|
|
|
|
|
|
/*
|
|
|
* Fields that report information about return values and errors.
|
|
|
* Protected by lock in BlockCopyState.
|
|
|
*/
|
|
|
bool error_is_read;
|
|
|
/*
|
|
|
* @ret is set concurrently by tasks under mutex. Only set once by first
|
|
|
* failed task (and untouched if no task failed).
|
|
|
* After finishing (call_state->finished is true), it is not modified
|
|
|
* anymore and may be safely read without mutex.
|
|
|
*/
|
|
|
int ret;
|
|
|
} BlockCopyCallState;
|
|
|
|
|
|
typedef struct BlockCopyTask {
|
|
|
AioTask task;
|
|
|
|
|
|
/*
|
|
|
* Fields initialized in block_copy_task_create()
|
|
|
* and never changed.
|
|
|
*/
|
|
|
BlockCopyState *s;
|
|
|
BlockCopyCallState *call_state;
|
|
|
/*
|
|
|
* @method can also be set again in the while loop of
|
|
|
* block_copy_dirty_clusters(), but it is never accessed concurrently
|
|
|
* because the only other function that reads it is
|
|
|
* block_copy_task_entry() and it is invoked afterwards in the same
|
|
|
* iteration.
|
|
|
*/
|
|
|
BlockCopyMethod method;
|
|
|
|
|
|
/*
|
|
|
* Generally, req is protected by lock in BlockCopyState, Still req.offset
|
|
|
* is only set on task creation, so may be read concurrently after creation.
|
|
|
* req.bytes is changed at most once, and need only protecting the case of
|
|
|
* parallel read while updating @bytes value in block_copy_task_shrink().
|
|
|
*/
|
|
|
BlockReq req;
|
|
|
} BlockCopyTask;
|
|
|
|
|
|
static int64_t task_end(BlockCopyTask *task)
|
|
|
{
|
|
|
return task->req.offset + task->req.bytes;
|
|
|
}
|
|
|
|
|
|
typedef struct BlockCopyState {
|
|
|
/*
|
|
|
* BdrvChild objects are not owned or managed by block-copy. They are
|
|
|
* provided by block-copy user and user is responsible for appropriate
|
|
|
* permissions on these children.
|
|
|
*/
|
|
|
BdrvChild *source;
|
|
|
BdrvChild *target;
|
|
|
|
|
|
/*
|
|
|
* Fields initialized in block_copy_state_new()
|
|
|
* and never changed.
|
|
|
*/
|
|
|
int64_t cluster_size;
|
|
|
int64_t max_transfer;
|
|
|
uint64_t len;
|
|
|
BdrvRequestFlags write_flags;
|
|
|
|
|
|
/*
|
|
|
* Fields whose state changes throughout the execution
|
|
|
* Protected by lock.
|
|
|
*/
|
|
|
CoMutex lock;
|
|
|
int64_t in_flight_bytes;
|
|
|
BlockCopyMethod method;
|
|
|
bool discard_source;
|
|
|
BlockReqList reqs;
|
|
|
QLIST_HEAD(, BlockCopyCallState) calls;
|
|
|
/*
|
|
|
* skip_unallocated:
|
|
|
*
|
|
|
* Used by sync=top jobs, which first scan the source node for unallocated
|
|
|
* areas and clear them in the copy_bitmap. During this process, the bitmap
|
|
|
* is thus not fully initialized: It may still have bits set for areas that
|
|
|
* are unallocated and should actually not be copied.
|
|
|
*
|
|
|
* This is indicated by skip_unallocated.
|
|
|
*
|
|
|
* In this case, block_copy() will query the source’s allocation status,
|
|
|
* skip unallocated regions, clear them in the copy_bitmap, and invoke
|
|
|
* block_copy_reset_unallocated() every time it does.
|
|
|
*/
|
|
|
bool skip_unallocated; /* atomic */
|
|
|
/* State fields that use a thread-safe API */
|
|
|
BdrvDirtyBitmap *copy_bitmap;
|
|
|
ProgressMeter *progress;
|
|
|
SharedResource *mem;
|
|
|
RateLimit rate_limit;
|
|
|
} BlockCopyState;
|
|
|
|
|
|
/* Called with lock held */
|
|
|
static int64_t block_copy_chunk_size(BlockCopyState *s)
|
|
|
{
|
|
|
switch (s->method) {
|
|
|
case COPY_READ_WRITE_CLUSTER:
|
|
|
return s->cluster_size;
|
|
|
case COPY_READ_WRITE:
|
|
|
case COPY_RANGE_SMALL:
|
|
|
return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER),
|
|
|
s->max_transfer);
|
|
|
case COPY_RANGE_FULL:
|
|
|
return MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE),
|
|
|
s->max_transfer);
|
|
|
default:
|
|
|
/* Cannot have COPY_WRITE_ZEROES here. */
|
|
|
abort();
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Search for the first dirty area in offset/bytes range and create task at
|
|
|
* the beginning of it.
|
|
|
*/
|
|
|
static coroutine_fn BlockCopyTask *
|
|
|
block_copy_task_create(BlockCopyState *s, BlockCopyCallState *call_state,
|
|
|
int64_t offset, int64_t bytes)
|
|
|
{
|
|
|
BlockCopyTask *task;
|
|
|
int64_t max_chunk;
|
|
|
|
|
|
QEMU_LOCK_GUARD(&s->lock);
|
|
|
max_chunk = MIN_NON_ZERO(block_copy_chunk_size(s), call_state->max_chunk);
|
|
|
if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap,
|
|
|
offset, offset + bytes,
|
|
|
max_chunk, &offset, &bytes))
|
|
|
{
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
|
|
bytes = QEMU_ALIGN_UP(bytes, s->cluster_size);
|
|
|
|
|
|
/* region is dirty, so no existent tasks possible in it */
|
|
|
assert(!reqlist_find_conflict(&s->reqs, offset, bytes));
|
|
|
|
|
|
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
|
|
s->in_flight_bytes += bytes;
|
|
|
|
|
|
task = g_new(BlockCopyTask, 1);
|
|
|
*task = (BlockCopyTask) {
|
|
|
.task.func = block_copy_task_entry,
|
|
|
.s = s,
|
|
|
.call_state = call_state,
|
|
|
.method = s->method,
|
|
|
};
|
|
|
reqlist_init_req(&s->reqs, &task->req, offset, bytes);
|
|
|
|
|
|
return task;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* block_copy_task_shrink
|
|
|
*
|
|
|
* Drop the tail of the task to be handled later. Set dirty bits back and
|
|
|
* wake up all tasks waiting for us (may be some of them are not intersecting
|
|
|
* with shrunk task)
|
|
|
*/
|
|
|
static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task,
|
|
|
int64_t new_bytes)
|
|
|
{
|
|
|
QEMU_LOCK_GUARD(&task->s->lock);
|
|
|
if (new_bytes == task->req.bytes) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
assert(new_bytes > 0 && new_bytes < task->req.bytes);
|
|
|
|
|
|
task->s->in_flight_bytes -= task->req.bytes - new_bytes;
|
|
|
bdrv_set_dirty_bitmap(task->s->copy_bitmap,
|
|
|
task->req.offset + new_bytes,
|
|
|
task->req.bytes - new_bytes);
|
|
|
|
|
|
reqlist_shrink_req(&task->req, new_bytes);
|
|
|
}
|
|
|
|
|
|
static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret)
|
|
|
{
|
|
|
QEMU_LOCK_GUARD(&task->s->lock);
|
|
|
task->s->in_flight_bytes -= task->req.bytes;
|
|
|
if (ret < 0) {
|
|
|
bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->req.offset,
|
|
|
task->req.bytes);
|
|
|
}
|
|
|
if (task->s->progress) {
|
|
|
progress_set_remaining(task->s->progress,
|
|
|
bdrv_get_dirty_count(task->s->copy_bitmap) +
|
|
|
task->s->in_flight_bytes);
|
|
|
}
|
|
|
reqlist_remove_req(&task->req);
|
|
|
}
|
|
|
|
|
|
void block_copy_state_free(BlockCopyState *s)
|
|
|
{
|
|
|
if (!s) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
ratelimit_destroy(&s->rate_limit);
|
|
|
bdrv_release_dirty_bitmap(s->copy_bitmap);
|
|
|
shres_destroy(s->mem);
|
|
|
g_free(s);
|
|
|
}
|
|
|
|
|
|
static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target)
|
|
|
{
|
|
|
return MIN_NON_ZERO(INT_MAX,
|
|
|
MIN_NON_ZERO(source->bs->bl.max_transfer,
|
|
|
target->bs->bl.max_transfer));
|
|
|
}
|
|
|
|
|
|
void block_copy_set_copy_opts(BlockCopyState *s, bool use_copy_range,
|
|
|
bool compress)
|
|
|
{
|
|
|
/* Keep BDRV_REQ_SERIALISING set (or not set) in block_copy_state_new() */
|
|
|
s->write_flags = (s->write_flags & BDRV_REQ_SERIALISING) |
|
|
|
(compress ? BDRV_REQ_WRITE_COMPRESSED : 0);
|
|
|
|
|
|
if (s->max_transfer < s->cluster_size) {
|
|
|
/*
|
|
|
* copy_range does not respect max_transfer. We don't want to bother
|
|
|
* with requests smaller than block-copy cluster size, so fallback to
|
|
|
* buffered copying (read and write respect max_transfer on their
|
|
|
* behalf).
|
|
|
*/
|
|
|
s->method = COPY_READ_WRITE_CLUSTER;
|
|
|
} else if (compress) {
|
|
|
/* Compression supports only cluster-size writes and no copy-range. */
|
|
|
s->method = COPY_READ_WRITE_CLUSTER;
|
|
|
} else {
|
|
|
/*
|
|
|
* If copy range enabled, start with COPY_RANGE_SMALL, until first
|
|
|
* successful copy_range (look at block_copy_do_copy).
|
|
|
*/
|
|
|
s->method = use_copy_range ? COPY_RANGE_SMALL : COPY_READ_WRITE;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
static int64_t block_copy_calculate_cluster_size(BlockDriverState *target,
|
|
|
int64_t min_cluster_size,
|
|
|
Error **errp)
|
|
|
{
|
|
|
int ret;
|
|
|
BlockDriverInfo bdi;
|
|
|
bool target_does_cow;
|
|
|
|
|
|
GLOBAL_STATE_CODE();
|
|
|
GRAPH_RDLOCK_GUARD_MAINLOOP();
|
|
|
|
|
|
min_cluster_size = MAX(min_cluster_size,
|
|
|
(int64_t)BLOCK_COPY_CLUSTER_SIZE_DEFAULT);
|
|
|
|
|
|
target_does_cow = bdrv_backing_chain_next(target);
|
|
|
|
|
|
/*
|
|
|
* If there is no backing file on the target, we cannot rely on COW if our
|
|
|
* backup cluster size is smaller than the target cluster size. Even for
|
|
|
* targets with a backing file, try to avoid COW if possible.
|
|
|
*/
|
|
|
ret = bdrv_get_info(target, &bdi);
|
|
|
if (ret == -ENOTSUP && !target_does_cow) {
|
|
|
/* Cluster size is not defined */
|
|
|
warn_report("The target block device doesn't provide information about "
|
|
|
"the block size and it doesn't have a backing file. The "
|
|
|
"(default) block size of %" PRIi64 " bytes is used. If the "
|
|
|
"actual block size of the target exceeds this value, the "
|
|
|
"backup may be unusable",
|
|
|
min_cluster_size);
|
|
|
return min_cluster_size;
|
|
|
} else if (ret < 0 && !target_does_cow) {
|
|
|
error_setg_errno(errp, -ret,
|
|
|
"Couldn't determine the cluster size of the target image, "
|
|
|
"which has no backing file");
|
|
|
error_append_hint(errp,
|
|
|
"Aborting, since this may create an unusable destination image\n");
|
|
|
return ret;
|
|
|
} else if (ret < 0 && target_does_cow) {
|
|
|
/* Not fatal; just trudge on ahead. */
|
|
|
return min_cluster_size;
|
|
|
}
|
|
|
|
|
|
return MAX(min_cluster_size, bdi.cluster_size);
|
|
|
}
|
|
|
|
|
|
BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target,
|
|
|
BlockDriverState *copy_bitmap_bs,
|
|
|
const BdrvDirtyBitmap *bitmap,
|
|
|
bool discard_source,
|
|
|
uint64_t min_cluster_size,
|
|
|
Error **errp)
|
|
|
{
|
|
|
ERRP_GUARD();
|
|
|
BlockCopyState *s;
|
|
|
int64_t cluster_size;
|
|
|
BdrvDirtyBitmap *copy_bitmap;
|
|
|
bool is_fleecing;
|
|
|
|
|
|
GLOBAL_STATE_CODE();
|
|
|
|
|
|
if (min_cluster_size > INT64_MAX) {
|
|
|
error_setg(errp, "min-cluster-size too large: %" PRIu64 " > %" PRIi64,
|
|
|
min_cluster_size, INT64_MAX);
|
|
|
return NULL;
|
|
|
} else if (min_cluster_size && !is_power_of_2(min_cluster_size)) {
|
|
|
error_setg(errp, "min-cluster-size needs to be a power of 2");
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
cluster_size = block_copy_calculate_cluster_size(target->bs,
|
|
|
(int64_t)min_cluster_size,
|
|
|
errp);
|
|
|
if (cluster_size < 0) {
|
|
|
return NULL;
|
|
|
}
|
|
|
|
|
|
copy_bitmap = bdrv_create_dirty_bitmap(copy_bitmap_bs, cluster_size, NULL,
|
|
|
errp);
|
|
|
if (!copy_bitmap) {
|
|
|
return NULL;
|
|
|
}
|
|
|
bdrv_disable_dirty_bitmap(copy_bitmap);
|
|
|
if (bitmap) {
|
|
|
if (!bdrv_merge_dirty_bitmap(copy_bitmap, bitmap, NULL, errp)) {
|
|
|
error_prepend(errp, "Failed to merge bitmap '%s' to internal "
|
|
|
"copy-bitmap: ", bdrv_dirty_bitmap_name(bitmap));
|
|
|
bdrv_release_dirty_bitmap(copy_bitmap);
|
|
|
return NULL;
|
|
|
}
|
|
|
} else {
|
|
|
bdrv_set_dirty_bitmap(copy_bitmap, 0,
|
|
|
bdrv_dirty_bitmap_size(copy_bitmap));
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* If source is in backing chain of target assume that target is going to be
|
|
|
* used for "image fleecing", i.e. it should represent a kind of snapshot of
|
|
|
* source at backup-start point in time. And target is going to be read by
|
|
|
* somebody (for example, used as NBD export) during backup job.
|
|
|
*
|
|
|
* In this case, we need to add BDRV_REQ_SERIALISING write flag to avoid
|
|
|
* intersection of backup writes and third party reads from target,
|
|
|
* otherwise reading from target we may occasionally read already updated by
|
|
|
* guest data.
|
|
|
*
|
|
|
* For more information see commit f8d59dfb40bb and test
|
|
|
* tests/qemu-iotests/222
|
|
|
*/
|
|
|
bdrv_graph_rdlock_main_loop();
|
|
|
is_fleecing = bdrv_chain_contains(target->bs, source->bs);
|
|
|
bdrv_graph_rdunlock_main_loop();
|
|
|
|
|
|
s = g_new(BlockCopyState, 1);
|
|
|
*s = (BlockCopyState) {
|
|
|
.source = source,
|
|
|
.target = target,
|
|
|
.copy_bitmap = copy_bitmap,
|
|
|
.cluster_size = cluster_size,
|
|
|
.len = bdrv_dirty_bitmap_size(copy_bitmap),
|
|
|
.write_flags = (is_fleecing ? BDRV_REQ_SERIALISING : 0),
|
|
|
.mem = shres_create(BLOCK_COPY_MAX_MEM),
|
|
|
.max_transfer = QEMU_ALIGN_DOWN(
|
|
|
block_copy_max_transfer(source, target),
|
|
|
cluster_size),
|
|
|
};
|
|
|
|
|
|
s->discard_source = discard_source;
|
|
|
block_copy_set_copy_opts(s, false, false);
|
|
|
|
|
|
ratelimit_init(&s->rate_limit);
|
|
|
qemu_co_mutex_init(&s->lock);
|
|
|
QLIST_INIT(&s->reqs);
|
|
|
QLIST_INIT(&s->calls);
|
|
|
|
|
|
return s;
|
|
|
}
|
|
|
|
|
|
/* Only set before running the job, no need for locking. */
|
|
|
void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm)
|
|
|
{
|
|
|
s->progress = pm;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Takes ownership of @task
|
|
|
*
|
|
|
* If pool is NULL directly run the task, otherwise schedule it into the pool.
|
|
|
*
|
|
|
* Returns: task.func return code if pool is NULL
|
|
|
* otherwise -ECANCELED if pool status is bad
|
|
|
* otherwise 0 (successfully scheduled)
|
|
|
*/
|
|
|
static coroutine_fn int block_copy_task_run(AioTaskPool *pool,
|
|
|
BlockCopyTask *task)
|
|
|
{
|
|
|
if (!pool) {
|
|
|
int ret = task->task.func(&task->task);
|
|
|
|
|
|
g_free(task);
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
aio_task_pool_wait_slot(pool);
|
|
|
if (aio_task_pool_status(pool) < 0) {
|
|
|
co_put_to_shres(task->s->mem, task->req.bytes);
|
|
|
block_copy_task_end(task, -ECANCELED);
|
|
|
g_free(task);
|
|
|
return -ECANCELED;
|
|
|
}
|
|
|
|
|
|
aio_task_pool_start_task(pool, &task->task);
|
|
|
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* block_copy_do_copy
|
|
|
*
|
|
|
* Do copy of cluster-aligned chunk. Requested region is allowed to exceed
|
|
|
* s->len only to cover last cluster when s->len is not aligned to clusters.
|
|
|
*
|
|
|
* No sync here: neither bitmap nor intersecting requests handling, only copy.
|
|
|
*
|
|
|
* @method is an in-out argument, so that copy_range can be either extended to
|
|
|
* a full-size buffer or disabled if the copy_range attempt fails. The output
|
|
|
* value of @method should be used for subsequent tasks.
|
|
|
* Returns 0 on success.
|
|
|
*/
|
|
|
static int coroutine_fn GRAPH_RDLOCK
|
|
|
block_copy_do_copy(BlockCopyState *s, int64_t offset, int64_t bytes,
|
|
|
BlockCopyMethod *method, bool *error_is_read)
|
|
|
{
|
|
|
int ret;
|
|
|
int64_t nbytes = MIN(offset + bytes, s->len) - offset;
|
|
|
void *bounce_buffer = NULL;
|
|
|
|
|
|
assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes);
|
|
|
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
|
|
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
|
|
assert(offset < s->len);
|
|
|
assert(offset + bytes <= s->len ||
|
|
|
offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size));
|
|
|
assert(nbytes < INT_MAX);
|
|
|
|
|
|
switch (*method) {
|
|
|
case COPY_WRITE_ZEROES:
|
|
|
ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags &
|
|
|
~BDRV_REQ_WRITE_COMPRESSED);
|
|
|
if (ret < 0) {
|
|
|
trace_block_copy_write_zeroes_fail(s, offset, ret);
|
|
|
*error_is_read = false;
|
|
|
}
|
|
|
return ret;
|
|
|
|
|
|
case COPY_RANGE_SMALL:
|
|
|
case COPY_RANGE_FULL:
|
|
|
ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes,
|
|
|
0, s->write_flags);
|
|
|
if (ret >= 0) {
|
|
|
/* Successful copy-range, increase chunk size. */
|
|
|
*method = COPY_RANGE_FULL;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
trace_block_copy_copy_range_fail(s, offset, ret);
|
|
|
*method = COPY_READ_WRITE;
|
|
|
/* Fall through to read+write with allocated buffer */
|
|
|
|
|
|
case COPY_READ_WRITE_CLUSTER:
|
|
|
case COPY_READ_WRITE:
|
|
|
/*
|
|
|
* In case of failed copy_range request above, we may proceed with
|
|
|
* buffered request larger than BLOCK_COPY_MAX_BUFFER.
|
|
|
* Still, further requests will be properly limited, so don't care too
|
|
|
* much. Moreover the most likely case (copy_range is unsupported for
|
|
|
* the configuration, so the very first copy_range request fails)
|
|
|
* is handled by setting large copy_size only after first successful
|
|
|
* copy_range.
|
|
|
*/
|
|
|
|
|
|
bounce_buffer = qemu_blockalign(s->source->bs, nbytes);
|
|
|
|
|
|
ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0);
|
|
|
if (ret < 0) {
|
|
|
trace_block_copy_read_fail(s, offset, ret);
|
|
|
*error_is_read = true;
|
|
|
goto out;
|
|
|
}
|
|
|
|
|
|
ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer,
|
|
|
s->write_flags);
|
|
|
if (ret < 0) {
|
|
|
trace_block_copy_write_fail(s, offset, ret);
|
|
|
*error_is_read = false;
|
|
|
goto out;
|
|
|
}
|
|
|
|
|
|
out:
|
|
|
qemu_vfree(bounce_buffer);
|
|
|
break;
|
|
|
|
|
|
default:
|
|
|
abort();
|
|
|
}
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
static coroutine_fn int block_copy_task_entry(AioTask *task)
|
|
|
{
|
|
|
BlockCopyTask *t = container_of(task, BlockCopyTask, task);
|
|
|
BlockCopyState *s = t->s;
|
|
|
bool error_is_read = false;
|
|
|
BlockCopyMethod method = t->method;
|
|
|
int ret = -1;
|
|
|
|
|
|
WITH_GRAPH_RDLOCK_GUARD() {
|
|
|
ret = block_copy_do_copy(s, t->req.offset, t->req.bytes, &method,
|
|
|
&error_is_read);
|
|
|
}
|
|
|
|
|
|
WITH_QEMU_LOCK_GUARD(&s->lock) {
|
|
|
if (s->method == t->method) {
|
|
|
s->method = method;
|
|
|
}
|
|
|
|
|
|
if (ret < 0) {
|
|
|
if (!t->call_state->ret) {
|
|
|
t->call_state->ret = ret;
|
|
|
t->call_state->error_is_read = error_is_read;
|
|
|
}
|
|
|
} else if (s->progress) {
|
|
|
progress_work_done(s->progress, t->req.bytes);
|
|
|
}
|
|
|
}
|
|
|
co_put_to_shres(s->mem, t->req.bytes);
|
|
|
block_copy_task_end(t, ret);
|
|
|
|
|
|
if (s->discard_source && ret == 0) {
|
|
|
int64_t nbytes =
|
|
|
MIN(t->req.offset + t->req.bytes, s->len) - t->req.offset;
|
|
|
WITH_GRAPH_RDLOCK_GUARD() {
|
|
|
bdrv_co_pdiscard(s->source, t->req.offset, nbytes);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
static coroutine_fn GRAPH_RDLOCK
|
|
|
int block_copy_block_status(BlockCopyState *s, int64_t offset, int64_t bytes,
|
|
|
int64_t *pnum)
|
|
|
{
|
|
|
int64_t num;
|
|
|
BlockDriverState *base;
|
|
|
int ret;
|
|
|
|
|
|
if (qatomic_read(&s->skip_unallocated)) {
|
|
|
base = bdrv_backing_chain_next(s->source->bs);
|
|
|
} else {
|
|
|
base = NULL;
|
|
|
}
|
|
|
|
|
|
ret = bdrv_co_block_status_above(s->source->bs, base, offset, bytes, &num,
|
|
|
NULL, NULL);
|
|
|
if (ret < 0 || num < s->cluster_size) {
|
|
|
/*
|
|
|
* On error or if failed to obtain large enough chunk just fallback to
|
|
|
* copy one cluster.
|
|
|
*/
|
|
|
num = s->cluster_size;
|
|
|
ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA;
|
|
|
} else if (offset + num == s->len) {
|
|
|
num = QEMU_ALIGN_UP(num, s->cluster_size);
|
|
|
} else {
|
|
|
num = QEMU_ALIGN_DOWN(num, s->cluster_size);
|
|
|
}
|
|
|
|
|
|
*pnum = num;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Check if the cluster starting at offset is allocated or not.
|
|
|
* return via pnum the number of contiguous clusters sharing this allocation.
|
|
|
*/
|
|
|
static int coroutine_fn GRAPH_RDLOCK
|
|
|
block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset,
|
|
|
int64_t *pnum)
|
|
|
{
|
|
|
BlockDriverState *bs = s->source->bs;
|
|
|
int64_t count, total_count = 0;
|
|
|
int64_t bytes = s->len - offset;
|
|
|
int ret;
|
|
|
|
|
|
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
|
|
|
|
|
while (true) {
|
|
|
/* protected in backup_run() */
|
|
|
ret = bdrv_co_is_allocated(bs, offset, bytes, &count);
|
|
|
if (ret < 0) {
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
total_count += count;
|
|
|
|
|
|
if (ret || count == 0) {
|
|
|
/*
|
|
|
* ret: partial segment(s) are considered allocated.
|
|
|
* otherwise: unallocated tail is treated as an entire segment.
|
|
|
*/
|
|
|
*pnum = DIV_ROUND_UP(total_count, s->cluster_size);
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
/* Unallocated segment(s) with uncertain following segment(s) */
|
|
|
if (total_count >= s->cluster_size) {
|
|
|
*pnum = total_count / s->cluster_size;
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
offset += count;
|
|
|
bytes -= count;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
void block_copy_reset(BlockCopyState *s, int64_t offset, int64_t bytes)
|
|
|
{
|
|
|
QEMU_LOCK_GUARD(&s->lock);
|
|
|
|
|
|
bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes);
|
|
|
if (s->progress) {
|
|
|
progress_set_remaining(s->progress,
|
|
|
bdrv_get_dirty_count(s->copy_bitmap) +
|
|
|
s->in_flight_bytes);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Reset bits in copy_bitmap starting at offset if they represent unallocated
|
|
|
* data in the image. May reset subsequent contiguous bits.
|
|
|
* @return 0 when the cluster at @offset was unallocated,
|
|
|
* 1 otherwise, and -ret on error.
|
|
|
*/
|
|
|
int64_t coroutine_fn block_copy_reset_unallocated(BlockCopyState *s,
|
|
|
int64_t offset,
|
|
|
int64_t *count)
|
|
|
{
|
|
|
int ret;
|
|
|
int64_t clusters, bytes;
|
|
|
|
|
|
ret = block_copy_is_cluster_allocated(s, offset, &clusters);
|
|
|
if (ret < 0) {
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
bytes = clusters * s->cluster_size;
|
|
|
|
|
|
if (!ret) {
|
|
|
block_copy_reset(s, offset, bytes);
|
|
|
}
|
|
|
|
|
|
*count = bytes;
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* block_copy_dirty_clusters
|
|
|
*
|
|
|
* Copy dirty clusters in @offset/@bytes range.
|
|
|
* Returns 1 if dirty clusters found and successfully copied, 0 if no dirty
|
|
|
* clusters found and -errno on failure.
|
|
|
*/
|
|
|
static int coroutine_fn GRAPH_RDLOCK
|
|
|
block_copy_dirty_clusters(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
BlockCopyState *s = call_state->s;
|
|
|
int64_t offset = call_state->offset;
|
|
|
int64_t bytes = call_state->bytes;
|
|
|
|
|
|
int ret = 0;
|
|
|
bool found_dirty = false;
|
|
|
int64_t end = offset + bytes;
|
|
|
AioTaskPool *aio = NULL;
|
|
|
|
|
|
/*
|
|
|
* block_copy() user is responsible for keeping source and target in same
|
|
|
* aio context
|
|
|
*/
|
|
|
assert(bdrv_get_aio_context(s->source->bs) ==
|
|
|
bdrv_get_aio_context(s->target->bs));
|
|
|
|
|
|
assert(QEMU_IS_ALIGNED(offset, s->cluster_size));
|
|
|
assert(QEMU_IS_ALIGNED(bytes, s->cluster_size));
|
|
|
|
|
|
while (bytes && aio_task_pool_status(aio) == 0 &&
|
|
|
!qatomic_read(&call_state->cancelled)) {
|
|
|
BlockCopyTask *task;
|
|
|
int64_t status_bytes;
|
|
|
|
|
|
task = block_copy_task_create(s, call_state, offset, bytes);
|
|
|
if (!task) {
|
|
|
/* No more dirty bits in the bitmap */
|
|
|
trace_block_copy_skip_range(s, offset, bytes);
|
|
|
break;
|
|
|
}
|
|
|
if (task->req.offset > offset) {
|
|
|
trace_block_copy_skip_range(s, offset, task->req.offset - offset);
|
|
|
}
|
|
|
|
|
|
found_dirty = true;
|
|
|
|
|
|
ret = block_copy_block_status(s, task->req.offset, task->req.bytes,
|
|
|
&status_bytes);
|
|
|
assert(ret >= 0); /* never fail */
|
|
|
if (status_bytes < task->req.bytes) {
|
|
|
block_copy_task_shrink(task, status_bytes);
|
|
|
}
|
|
|
if (qatomic_read(&s->skip_unallocated) &&
|
|
|
!(ret & BDRV_BLOCK_ALLOCATED)) {
|
|
|
block_copy_task_end(task, 0);
|
|
|
trace_block_copy_skip_range(s, task->req.offset, task->req.bytes);
|
|
|
offset = task_end(task);
|
|
|
bytes = end - offset;
|
|
|
g_free(task);
|
|
|
continue;
|
|
|
}
|
|
|
if (ret & BDRV_BLOCK_ZERO) {
|
|
|
task->method = COPY_WRITE_ZEROES;
|
|
|
}
|
|
|
|
|
|
if (!call_state->ignore_ratelimit) {
|
|
|
uint64_t ns = ratelimit_calculate_delay(&s->rate_limit, 0);
|
|
|
if (ns > 0) {
|
|
|
block_copy_task_end(task, -EAGAIN);
|
|
|
g_free(task);
|
|
|
qemu_co_sleep_ns_wakeable(&call_state->sleep,
|
|
|
QEMU_CLOCK_REALTIME, ns);
|
|
|
continue;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
ratelimit_calculate_delay(&s->rate_limit, task->req.bytes);
|
|
|
|
|
|
trace_block_copy_process(s, task->req.offset);
|
|
|
|
|
|
co_get_from_shres(s->mem, task->req.bytes);
|
|
|
|
|
|
offset = task_end(task);
|
|
|
bytes = end - offset;
|
|
|
|
|
|
if (!aio && bytes) {
|
|
|
aio = aio_task_pool_new(call_state->max_workers);
|
|
|
}
|
|
|
|
|
|
ret = block_copy_task_run(aio, task);
|
|
|
if (ret < 0) {
|
|
|
goto out;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
out:
|
|
|
if (aio) {
|
|
|
aio_task_pool_wait_all(aio);
|
|
|
|
|
|
/*
|
|
|
* We are not really interested in -ECANCELED returned from
|
|
|
* block_copy_task_run. If it fails, it means some task already failed
|
|
|
* for real reason, let's return first failure.
|
|
|
* Still, assert that we don't rewrite failure by success.
|
|
|
*
|
|
|
* Note: ret may be positive here because of block-status result.
|
|
|
*/
|
|
|
assert(ret >= 0 || aio_task_pool_status(aio) < 0);
|
|
|
ret = aio_task_pool_status(aio);
|
|
|
|
|
|
aio_task_pool_free(aio);
|
|
|
}
|
|
|
|
|
|
return ret < 0 ? ret : found_dirty;
|
|
|
}
|
|
|
|
|
|
void block_copy_kick(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
qemu_co_sleep_wake(&call_state->sleep);
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* block_copy_common
|
|
|
*
|
|
|
* Copy requested region, accordingly to dirty bitmap.
|
|
|
* Collaborate with parallel block_copy requests: if they succeed it will help
|
|
|
* us. If they fail, we will retry not-copied regions. So, if we return error,
|
|
|
* it means that some I/O operation failed in context of _this_ block_copy call,
|
|
|
* not some parallel operation.
|
|
|
*/
|
|
|
static int coroutine_fn GRAPH_RDLOCK
|
|
|
block_copy_common(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
int ret;
|
|
|
BlockCopyState *s = call_state->s;
|
|
|
|
|
|
qemu_co_mutex_lock(&s->lock);
|
|
|
QLIST_INSERT_HEAD(&s->calls, call_state, list);
|
|
|
qemu_co_mutex_unlock(&s->lock);
|
|
|
|
|
|
do {
|
|
|
ret = block_copy_dirty_clusters(call_state);
|
|
|
|
|
|
if (ret == 0 && !qatomic_read(&call_state->cancelled)) {
|
|
|
WITH_QEMU_LOCK_GUARD(&s->lock) {
|
|
|
/*
|
|
|
* Check that there is no task we still need to
|
|
|
* wait to complete
|
|
|
*/
|
|
|
ret = reqlist_wait_one(&s->reqs, call_state->offset,
|
|
|
call_state->bytes, &s->lock);
|
|
|
if (ret == 0) {
|
|
|
/*
|
|
|
* No pending tasks, but check again the bitmap in this
|
|
|
* same critical section, since a task might have failed
|
|
|
* between this and the critical section in
|
|
|
* block_copy_dirty_clusters().
|
|
|
*
|
|
|
* reqlist_wait_one return value 0 also means that it
|
|
|
* didn't release the lock. So, we are still in the same
|
|
|
* critical section, not interrupted by any concurrent
|
|
|
* access to state.
|
|
|
*/
|
|
|
ret = bdrv_dirty_bitmap_next_dirty(s->copy_bitmap,
|
|
|
call_state->offset,
|
|
|
call_state->bytes) >= 0;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* We retry in two cases:
|
|
|
* 1. Some progress done
|
|
|
* Something was copied, which means that there were yield points
|
|
|
* and some new dirty bits may have appeared (due to failed parallel
|
|
|
* block-copy requests).
|
|
|
* 2. We have waited for some intersecting block-copy request
|
|
|
* It may have failed and produced new dirty bits.
|
|
|
*/
|
|
|
} while (ret > 0 && !qatomic_read(&call_state->cancelled));
|
|
|
|
|
|
qatomic_store_release(&call_state->finished, true);
|
|
|
|
|
|
if (call_state->cb) {
|
|
|
call_state->cb(call_state->cb_opaque);
|
|
|
}
|
|
|
|
|
|
qemu_co_mutex_lock(&s->lock);
|
|
|
QLIST_REMOVE(call_state, list);
|
|
|
qemu_co_mutex_unlock(&s->lock);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
static void coroutine_fn block_copy_async_co_entry(void *opaque)
|
|
|
{
|
|
|
GRAPH_RDLOCK_GUARD();
|
|
|
block_copy_common(opaque);
|
|
|
}
|
|
|
|
|
|
int coroutine_fn block_copy(BlockCopyState *s, int64_t start, int64_t bytes,
|
|
|
bool ignore_ratelimit, uint64_t timeout_ns,
|
|
|
BlockCopyAsyncCallbackFunc cb,
|
|
|
void *cb_opaque)
|
|
|
{
|
|
|
int ret;
|
|
|
BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
|
|
|
|
|
|
*call_state = (BlockCopyCallState) {
|
|
|
.s = s,
|
|
|
.offset = start,
|
|
|
.bytes = bytes,
|
|
|
.ignore_ratelimit = ignore_ratelimit,
|
|
|
.max_workers = BLOCK_COPY_MAX_WORKERS,
|
|
|
.cb = cb,
|
|
|
.cb_opaque = cb_opaque,
|
|
|
};
|
|
|
|
|
|
ret = qemu_co_timeout(block_copy_async_co_entry, call_state, timeout_ns,
|
|
|
g_free);
|
|
|
if (ret < 0) {
|
|
|
assert(ret == -ETIMEDOUT);
|
|
|
block_copy_call_cancel(call_state);
|
|
|
/* call_state will be freed by running coroutine. */
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
ret = call_state->ret;
|
|
|
g_free(call_state);
|
|
|
|
|
|
return ret;
|
|
|
}
|
|
|
|
|
|
BlockCopyCallState *block_copy_async(BlockCopyState *s,
|
|
|
int64_t offset, int64_t bytes,
|
|
|
int max_workers, int64_t max_chunk,
|
|
|
BlockCopyAsyncCallbackFunc cb,
|
|
|
void *cb_opaque)
|
|
|
{
|
|
|
BlockCopyCallState *call_state = g_new(BlockCopyCallState, 1);
|
|
|
|
|
|
*call_state = (BlockCopyCallState) {
|
|
|
.s = s,
|
|
|
.offset = offset,
|
|
|
.bytes = bytes,
|
|
|
.max_workers = max_workers,
|
|
|
.max_chunk = max_chunk,
|
|
|
.cb = cb,
|
|
|
.cb_opaque = cb_opaque,
|
|
|
|
|
|
.co = qemu_coroutine_create(block_copy_async_co_entry, call_state),
|
|
|
};
|
|
|
|
|
|
qemu_coroutine_enter(call_state->co);
|
|
|
|
|
|
return call_state;
|
|
|
}
|
|
|
|
|
|
void block_copy_call_free(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
if (!call_state) {
|
|
|
return;
|
|
|
}
|
|
|
|
|
|
assert(qatomic_read(&call_state->finished));
|
|
|
g_free(call_state);
|
|
|
}
|
|
|
|
|
|
bool block_copy_call_finished(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
return qatomic_read(&call_state->finished);
|
|
|
}
|
|
|
|
|
|
bool block_copy_call_succeeded(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
return qatomic_load_acquire(&call_state->finished) &&
|
|
|
!qatomic_read(&call_state->cancelled) &&
|
|
|
call_state->ret == 0;
|
|
|
}
|
|
|
|
|
|
bool block_copy_call_failed(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
return qatomic_load_acquire(&call_state->finished) &&
|
|
|
!qatomic_read(&call_state->cancelled) &&
|
|
|
call_state->ret < 0;
|
|
|
}
|
|
|
|
|
|
bool block_copy_call_cancelled(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
return qatomic_read(&call_state->cancelled);
|
|
|
}
|
|
|
|
|
|
int block_copy_call_status(BlockCopyCallState *call_state, bool *error_is_read)
|
|
|
{
|
|
|
assert(qatomic_load_acquire(&call_state->finished));
|
|
|
if (error_is_read) {
|
|
|
*error_is_read = call_state->error_is_read;
|
|
|
}
|
|
|
return call_state->ret;
|
|
|
}
|
|
|
|
|
|
/*
|
|
|
* Note that cancelling and finishing are racy.
|
|
|
* User can cancel a block-copy that is already finished.
|
|
|
*/
|
|
|
void block_copy_call_cancel(BlockCopyCallState *call_state)
|
|
|
{
|
|
|
qatomic_set(&call_state->cancelled, true);
|
|
|
block_copy_kick(call_state);
|
|
|
}
|
|
|
|
|
|
BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s)
|
|
|
{
|
|
|
return s->copy_bitmap;
|
|
|
}
|
|
|
|
|
|
int64_t block_copy_cluster_size(BlockCopyState *s)
|
|
|
{
|
|
|
return s->cluster_size;
|
|
|
}
|
|
|
|
|
|
void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip)
|
|
|
{
|
|
|
qatomic_set(&s->skip_unallocated, skip);
|
|
|
}
|
|
|
|
|
|
void block_copy_set_speed(BlockCopyState *s, uint64_t speed)
|
|
|
{
|
|
|
ratelimit_set_speed(&s->rate_limit, speed, BLOCK_COPY_SLICE_TIME);
|
|
|
|
|
|
/*
|
|
|
* Note: it's good to kick all call states from here, but it should be done
|
|
|
* only from a coroutine, to not crash if s->calls list changed while
|
|
|
* entering one call. So for now, the only user of this function kicks its
|
|
|
* only one call_state by hand.
|
|
|
*/
|
|
|
}
|