You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
qemu/accel/mshv/mshv-all.c

728 lines
18 KiB
C

/*
* QEMU MSHV support
*
* Copyright Microsoft, Corp. 2025
*
* Authors:
* Ziqiao Zhou <ziqiaozhou@microsoft.com>
* Magnus Kulke <magnuskulke@microsoft.com>
* Jinank Jain <jinankjain@microsoft.com>
* Wei Liu <liuwe@microsoft.com>
*
* SPDX-License-Identifier: GPL-2.0-or-later
*
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/event_notifier.h"
#include "qemu/module.h"
#include "qemu/main-loop.h"
#include "hw/boards.h"
#include "hw/hyperv/hvhdk.h"
#include "hw/hyperv/hvhdk_mini.h"
#include "hw/hyperv/hvgdk.h"
#include "hw/hyperv/hvgdk_mini.h"
#include "linux/mshv.h"
#include "qemu/accel.h"
#include "qemu/guest-random.h"
#include "accel/accel-ops.h"
#include "accel/accel-cpu-ops.h"
#include "system/cpus.h"
#include "system/runstate.h"
#include "system/accel-blocker.h"
#include "system/address-spaces.h"
#include "system/mshv.h"
#include "system/mshv_int.h"
#include "system/reset.h"
#include "trace.h"
#include <err.h>
#include <stdint.h>
#include <sys/ioctl.h>
#define TYPE_MSHV_ACCEL ACCEL_CLASS_NAME("mshv")
DECLARE_INSTANCE_CHECKER(MshvState, MSHV_STATE, TYPE_MSHV_ACCEL)
bool mshv_allowed;
MshvState *mshv_state;
static int init_mshv(int *mshv_fd)
{
int fd = open("/dev/mshv", O_RDWR | O_CLOEXEC);
if (fd < 0) {
error_report("Failed to open /dev/mshv: %s", strerror(errno));
return -1;
}
*mshv_fd = fd;
return 0;
}
/* freeze 1 to pause, 0 to resume */
static int set_time_freeze(int vm_fd, int freeze)
{
int ret;
struct hv_input_set_partition_property in = {0};
in.property_code = HV_PARTITION_PROPERTY_TIME_FREEZE;
in.property_value = freeze;
struct mshv_root_hvcall args = {0};
args.code = HVCALL_SET_PARTITION_PROPERTY;
args.in_sz = sizeof(in);
args.in_ptr = (uint64_t)&in;
ret = mshv_hvcall(vm_fd, &args);
if (ret < 0) {
error_report("Failed to set time freeze");
return -1;
}
return 0;
}
static int pause_vm(int vm_fd)
{
int ret;
ret = set_time_freeze(vm_fd, 1);
if (ret < 0) {
error_report("Failed to pause partition: %s", strerror(errno));
return -1;
}
return 0;
}
static int resume_vm(int vm_fd)
{
int ret;
ret = set_time_freeze(vm_fd, 0);
if (ret < 0) {
error_report("Failed to resume partition: %s", strerror(errno));
return -1;
}
return 0;
}
static int create_partition(int mshv_fd, int *vm_fd)
{
int ret;
struct mshv_create_partition args = {0};
/* Initialize pt_flags with the desired features */
uint64_t pt_flags = (1ULL << MSHV_PT_BIT_LAPIC) |
(1ULL << MSHV_PT_BIT_X2APIC) |
(1ULL << MSHV_PT_BIT_GPA_SUPER_PAGES);
/* Set default isolation type */
uint64_t pt_isolation = MSHV_PT_ISOLATION_NONE;
args.pt_flags = pt_flags;
args.pt_isolation = pt_isolation;
ret = ioctl(mshv_fd, MSHV_CREATE_PARTITION, &args);
if (ret < 0) {
error_report("Failed to create partition: %s", strerror(errno));
return -1;
}
*vm_fd = ret;
return 0;
}
static int set_synthetic_proc_features(int vm_fd)
{
int ret;
struct hv_input_set_partition_property in = {0};
union hv_partition_synthetic_processor_features features = {0};
/* Access the bitfield and set the desired features */
features.hypervisor_present = 1;
features.hv1 = 1;
features.access_partition_reference_counter = 1;
features.access_synic_regs = 1;
features.access_synthetic_timer_regs = 1;
features.access_partition_reference_tsc = 1;
features.access_frequency_regs = 1;
features.access_intr_ctrl_regs = 1;
features.access_vp_index = 1;
features.access_hypercall_regs = 1;
features.tb_flush_hypercalls = 1;
features.synthetic_cluster_ipi = 1;
features.direct_synthetic_timers = 1;
mshv_arch_amend_proc_features(&features);
in.property_code = HV_PARTITION_PROPERTY_SYNTHETIC_PROC_FEATURES;
in.property_value = features.as_uint64[0];
struct mshv_root_hvcall args = {0};
args.code = HVCALL_SET_PARTITION_PROPERTY;
args.in_sz = sizeof(in);
args.in_ptr = (uint64_t)&in;
trace_mshv_hvcall_args("synthetic_proc_features", args.code, args.in_sz);
ret = mshv_hvcall(vm_fd, &args);
if (ret < 0) {
error_report("Failed to set synthethic proc features");
return -errno;
}
return 0;
}
static int initialize_vm(int vm_fd)
{
int ret = ioctl(vm_fd, MSHV_INITIALIZE_PARTITION);
if (ret < 0) {
error_report("Failed to initialize partition: %s", strerror(errno));
return -1;
}
return 0;
}
static int create_vm(int mshv_fd, int *vm_fd)
{
int ret = create_partition(mshv_fd, vm_fd);
if (ret < 0) {
return -1;
}
ret = set_synthetic_proc_features(*vm_fd);
if (ret < 0) {
return -1;
}
ret = initialize_vm(*vm_fd);
if (ret < 0) {
return -1;
}
ret = mshv_reserve_ioapic_msi_routes(*vm_fd);
if (ret < 0) {
return -1;
}
ret = mshv_arch_post_init_vm(*vm_fd);
if (ret < 0) {
return -1;
}
/* Always create a frozen partition */
pause_vm(*vm_fd);
return 0;
}
static void mem_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
MshvMemoryListener *mml;
mml = container_of(listener, MshvMemoryListener, listener);
memory_region_ref(section->mr);
mshv_set_phys_mem(mml, section, true);
}
static void mem_region_del(MemoryListener *listener,
MemoryRegionSection *section)
{
MshvMemoryListener *mml;
mml = container_of(listener, MshvMemoryListener, listener);
mshv_set_phys_mem(mml, section, false);
memory_region_unref(section->mr);
}
typedef enum {
DATAMATCH_NONE,
DATAMATCH_U32,
DATAMATCH_U64,
} DatamatchTag;
typedef struct {
DatamatchTag tag;
union {
uint32_t u32;
uint64_t u64;
} value;
} Datamatch;
/* flags: determine whether to de/assign */
static int ioeventfd(int vm_fd, int event_fd, uint64_t addr, Datamatch dm,
uint32_t flags)
{
struct mshv_user_ioeventfd args = {0};
args.fd = event_fd;
args.addr = addr;
args.flags = flags;
if (dm.tag == DATAMATCH_NONE) {
args.datamatch = 0;
} else {
flags |= BIT(MSHV_IOEVENTFD_BIT_DATAMATCH);
args.flags = flags;
if (dm.tag == DATAMATCH_U64) {
args.len = sizeof(uint64_t);
args.datamatch = dm.value.u64;
} else {
args.len = sizeof(uint32_t);
args.datamatch = dm.value.u32;
}
}
return ioctl(vm_fd, MSHV_IOEVENTFD, &args);
}
static int unregister_ioevent(int vm_fd, int event_fd, uint64_t mmio_addr)
{
uint32_t flags = 0;
Datamatch dm = {0};
flags |= BIT(MSHV_IOEVENTFD_BIT_DEASSIGN);
dm.tag = DATAMATCH_NONE;
return ioeventfd(vm_fd, event_fd, mmio_addr, dm, flags);
}
static int register_ioevent(int vm_fd, int event_fd, uint64_t mmio_addr,
uint64_t val, bool is_64bit, bool is_datamatch)
{
uint32_t flags = 0;
Datamatch dm = {0};
if (!is_datamatch) {
dm.tag = DATAMATCH_NONE;
} else if (is_64bit) {
dm.tag = DATAMATCH_U64;
dm.value.u64 = val;
} else {
dm.tag = DATAMATCH_U32;
dm.value.u32 = val;
}
return ioeventfd(vm_fd, event_fd, mmio_addr, dm, flags);
}
static void mem_ioeventfd_add(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int ret;
bool is_64 = int128_get64(section->size) == 8;
uint64_t addr = section->offset_within_address_space;
trace_mshv_mem_ioeventfd_add(addr, int128_get64(section->size), data);
ret = register_ioevent(mshv_state->vm, fd, addr, data, is_64, match_data);
if (ret < 0) {
error_report("Failed to register ioeventfd: %s (%d)", strerror(-ret),
-ret);
abort();
}
}
static void mem_ioeventfd_del(MemoryListener *listener,
MemoryRegionSection *section,
bool match_data, uint64_t data,
EventNotifier *e)
{
int fd = event_notifier_get_fd(e);
int ret;
uint64_t addr = section->offset_within_address_space;
trace_mshv_mem_ioeventfd_del(section->offset_within_address_space,
int128_get64(section->size), data);
ret = unregister_ioevent(mshv_state->vm, fd, addr);
if (ret < 0) {
error_report("Failed to unregister ioeventfd: %s (%d)", strerror(-ret),
-ret);
abort();
}
}
static MemoryListener mshv_memory_listener = {
.name = "mshv",
.priority = MEMORY_LISTENER_PRIORITY_ACCEL,
.region_add = mem_region_add,
.region_del = mem_region_del,
.eventfd_add = mem_ioeventfd_add,
.eventfd_del = mem_ioeventfd_del,
};
static MemoryListener mshv_io_listener = {
.name = "mshv", .priority = MEMORY_LISTENER_PRIORITY_DEV_BACKEND,
/* MSHV does not support PIO eventfd */
};
static void register_mshv_memory_listener(MshvState *s, MshvMemoryListener *mml,
AddressSpace *as, int as_id,
const char *name)
{
int i;
mml->listener = mshv_memory_listener;
mml->listener.name = name;
memory_listener_register(&mml->listener, as);
for (i = 0; i < s->nr_as; ++i) {
if (!s->as[i].as) {
s->as[i].as = as;
s->as[i].ml = mml;
break;
}
}
}
int mshv_hvcall(int fd, const struct mshv_root_hvcall *args)
{
int ret = 0;
ret = ioctl(fd, MSHV_ROOT_HVCALL, args);
if (ret < 0) {
error_report("Failed to perform hvcall: %s", strerror(errno));
return -1;
}
return ret;
}
static int mshv_init_vcpu(CPUState *cpu)
{
int vm_fd = mshv_state->vm;
uint8_t vp_index = cpu->cpu_index;
int ret;
cpu->accel = g_new0(AccelCPUState, 1);
mshv_arch_init_vcpu(cpu);
ret = mshv_create_vcpu(vm_fd, vp_index, &cpu->accel->cpufd);
if (ret < 0) {
return -1;
}
cpu->accel->dirty = true;
return 0;
}
static int mshv_init(AccelState *as, MachineState *ms)
{
MshvState *s;
int mshv_fd, vm_fd, ret;
if (mshv_state) {
warn_report("MSHV accelerator already initialized");
return 0;
}
s = MSHV_STATE(as);
accel_blocker_init();
s->vm = 0;
ret = init_mshv(&mshv_fd);
if (ret < 0) {
return -1;
}
mshv_init_mmio_emu();
mshv_init_msicontrol();
mshv_init_memory_slot_manager(s);
ret = create_vm(mshv_fd, &vm_fd);
if (ret < 0) {
close(mshv_fd);
return -1;
}
ret = resume_vm(vm_fd);
if (ret < 0) {
close(mshv_fd);
close(vm_fd);
return -1;
}
s->vm = vm_fd;
s->fd = mshv_fd;
s->nr_as = 1;
s->as = g_new0(MshvAddressSpace, s->nr_as);
mshv_state = s;
register_mshv_memory_listener(s, &s->memory_listener, &address_space_memory,
0, "mshv-memory");
memory_listener_register(&mshv_io_listener, &address_space_io);
return 0;
}
static int mshv_destroy_vcpu(CPUState *cpu)
{
int cpu_fd = mshv_vcpufd(cpu);
int vm_fd = mshv_state->vm;
mshv_remove_vcpu(vm_fd, cpu_fd);
mshv_vcpufd(cpu) = 0;
mshv_arch_destroy_vcpu(cpu);
g_clear_pointer(&cpu->accel, g_free);
return 0;
}
static int mshv_cpu_exec(CPUState *cpu)
{
hv_message mshv_msg;
enum MshvVmExit exit_reason;
int ret = 0;
bql_unlock();
cpu_exec_start(cpu);
do {
if (cpu->accel->dirty) {
ret = mshv_arch_put_registers(cpu);
if (ret) {
error_report("Failed to put registers after init: %s",
strerror(-ret));
ret = -1;
break;
}
cpu->accel->dirty = false;
}
ret = mshv_run_vcpu(mshv_state->vm, cpu, &mshv_msg, &exit_reason);
if (ret < 0) {
error_report("Failed to run on vcpu %d", cpu->cpu_index);
abort();
}
switch (exit_reason) {
case MshvVmExitIgnore:
break;
default:
ret = EXCP_INTERRUPT;
break;
}
} while (ret == 0);
cpu_exec_end(cpu);
bql_lock();
if (ret < 0) {
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
return ret;
}
/*
* The signal handler is triggered when QEMU's main thread receives a SIG_IPI
* (SIGUSR1). This signal causes the current CPU thread to be kicked, forcing a
* VM exit on the CPU. The VM exit generates an exit reason that breaks the loop
* (see mshv_cpu_exec). If the exit is due to a Ctrl+A+x command, the system
* will shut down. For other cases, the system will continue running.
*/
static void sa_ipi_handler(int sig)
{
/* TODO: call IOCTL to set_immediate_exit, once implemented. */
qemu_cpu_kick_self();
}
static void init_signal(CPUState *cpu)
{
/* init cpu signals */
struct sigaction sigact;
sigset_t set;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = sa_ipi_handler;
sigaction(SIG_IPI, &sigact, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
pthread_sigmask(SIG_SETMASK, &set, NULL);
}
static void *mshv_vcpu_thread(void *arg)
{
CPUState *cpu = arg;
int ret;
rcu_register_thread();
bql_lock();
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
current_cpu = cpu;
ret = mshv_init_vcpu(cpu);
if (ret < 0) {
error_report("Failed to init vcpu %d", cpu->cpu_index);
goto cleanup;
}
init_signal(cpu);
/* signal CPU creation */
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
do {
qemu_process_cpu_events(cpu);
if (cpu_can_run(cpu)) {
mshv_cpu_exec(cpu);
}
} while (!cpu->unplug || cpu_can_run(cpu));
mshv_destroy_vcpu(cpu);
cleanup:
cpu_thread_signal_destroyed(cpu);
bql_unlock();
rcu_unregister_thread();
return NULL;
}
static void mshv_start_vcpu_thread(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
cpu->thread = g_malloc0(sizeof(QemuThread));
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);
trace_mshv_start_vcpu_thread(thread_name, cpu->cpu_index);
qemu_thread_create(cpu->thread, thread_name, mshv_vcpu_thread, cpu,
QEMU_THREAD_JOINABLE);
}
static void do_mshv_cpu_synchronize_post_init(CPUState *cpu,
run_on_cpu_data arg)
{
int ret = mshv_arch_put_registers(cpu);
if (ret < 0) {
error_report("Failed to put registers after init: %s", strerror(-ret));
abort();
}
cpu->accel->dirty = false;
}
static void mshv_cpu_synchronize_post_init(CPUState *cpu)
{
run_on_cpu(cpu, do_mshv_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
}
static void mshv_cpu_synchronize_post_reset(CPUState *cpu)
{
int ret = mshv_arch_put_registers(cpu);
if (ret) {
error_report("Failed to put registers after reset: %s",
strerror(-ret));
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
cpu->accel->dirty = false;
}
static void do_mshv_cpu_synchronize_pre_loadvm(CPUState *cpu,
run_on_cpu_data arg)
{
cpu->accel->dirty = true;
}
static void mshv_cpu_synchronize_pre_loadvm(CPUState *cpu)
{
run_on_cpu(cpu, do_mshv_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
}
static void do_mshv_cpu_synchronize(CPUState *cpu, run_on_cpu_data arg)
{
if (!cpu->accel->dirty) {
int ret = mshv_load_regs(cpu);
if (ret < 0) {
error_report("Failed to load registers for vcpu %d",
cpu->cpu_index);
cpu_dump_state(cpu, stderr, CPU_DUMP_CODE);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
cpu->accel->dirty = true;
}
}
static void mshv_cpu_synchronize(CPUState *cpu)
{
if (!cpu->accel->dirty) {
run_on_cpu(cpu, do_mshv_cpu_synchronize, RUN_ON_CPU_NULL);
}
}
static bool mshv_cpus_are_resettable(void)
{
return false;
}
static void mshv_accel_class_init(ObjectClass *oc, const void *data)
{
AccelClass *ac = ACCEL_CLASS(oc);
ac->name = "MSHV";
ac->init_machine = mshv_init;
ac->allowed = &mshv_allowed;
}
static void mshv_accel_instance_init(Object *obj)
{
MshvState *s = MSHV_STATE(obj);
s->vm = 0;
}
static const TypeInfo mshv_accel_type = {
.name = TYPE_MSHV_ACCEL,
.parent = TYPE_ACCEL,
.instance_init = mshv_accel_instance_init,
.class_init = mshv_accel_class_init,
.instance_size = sizeof(MshvState),
};
static void mshv_accel_ops_class_init(ObjectClass *oc, const void *data)
{
AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
ops->create_vcpu_thread = mshv_start_vcpu_thread;
ops->synchronize_post_init = mshv_cpu_synchronize_post_init;
ops->synchronize_post_reset = mshv_cpu_synchronize_post_reset;
ops->synchronize_state = mshv_cpu_synchronize;
ops->synchronize_pre_loadvm = mshv_cpu_synchronize_pre_loadvm;
ops->cpus_are_resettable = mshv_cpus_are_resettable;
ops->handle_interrupt = generic_handle_interrupt;
}
static const TypeInfo mshv_accel_ops_type = {
.name = ACCEL_OPS_NAME("mshv"),
.parent = TYPE_ACCEL_OPS,
.class_init = mshv_accel_ops_class_init,
.abstract = true,
};
static void mshv_type_init(void)
{
type_register_static(&mshv_accel_type);
type_register_static(&mshv_accel_ops_type);
}
type_init(mshv_type_init);