mirror of https://gitlab.com/qemu-project/qemu
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
610 lines
16 KiB
C
610 lines
16 KiB
C
/*
|
|
* Copyright 2008 IBM Corporation
|
|
* 2008 Red Hat, Inc.
|
|
* Copyright 2011 Intel Corporation
|
|
* Copyright 2016 Veertu, Inc.
|
|
* Copyright 2017 The Android Open Source Project
|
|
*
|
|
* QEMU Hypervisor.framework support
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of version 2 of the GNU General Public
|
|
* License as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* This file contain code under public domain from the hvdos project:
|
|
* https://github.com/mist64/hvdos
|
|
*
|
|
* Parts Copyright (c) 2011 NetApp, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "exec/exec-all.h"
|
|
#include "gdbstub/enums.h"
|
|
#include "hw/boards.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/hvf.h"
|
|
#include "sysemu/hvf_int.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "qemu/guest-random.h"
|
|
|
|
HVFState *hvf_state;
|
|
|
|
/* Memory slots */
|
|
|
|
hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t size)
|
|
{
|
|
hvf_slot *slot;
|
|
int x;
|
|
for (x = 0; x < hvf_state->num_slots; ++x) {
|
|
slot = &hvf_state->slots[x];
|
|
if (slot->size && start < (slot->start + slot->size) &&
|
|
(start + size) > slot->start) {
|
|
return slot;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct mac_slot {
|
|
int present;
|
|
uint64_t size;
|
|
uint64_t gpa_start;
|
|
uint64_t gva;
|
|
};
|
|
|
|
struct mac_slot mac_slots[32];
|
|
|
|
static int do_hvf_set_memory(hvf_slot *slot, hv_memory_flags_t flags)
|
|
{
|
|
struct mac_slot *macslot;
|
|
hv_return_t ret;
|
|
|
|
macslot = &mac_slots[slot->slot_id];
|
|
|
|
if (macslot->present) {
|
|
if (macslot->size != slot->size) {
|
|
macslot->present = 0;
|
|
ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
|
|
assert_hvf_ok(ret);
|
|
}
|
|
}
|
|
|
|
if (!slot->size) {
|
|
return 0;
|
|
}
|
|
|
|
macslot->present = 1;
|
|
macslot->gpa_start = slot->start;
|
|
macslot->size = slot->size;
|
|
ret = hv_vm_map(slot->mem, slot->start, slot->size, flags);
|
|
assert_hvf_ok(ret);
|
|
return 0;
|
|
}
|
|
|
|
static void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
|
|
{
|
|
hvf_slot *mem;
|
|
MemoryRegion *area = section->mr;
|
|
bool writable = !area->readonly && !area->rom_device;
|
|
hv_memory_flags_t flags;
|
|
uint64_t page_size = qemu_real_host_page_size();
|
|
|
|
if (!memory_region_is_ram(area)) {
|
|
if (writable) {
|
|
return;
|
|
} else if (!memory_region_is_romd(area)) {
|
|
/*
|
|
* If the memory device is not in romd_mode, then we actually want
|
|
* to remove the hvf memory slot so all accesses will trap.
|
|
*/
|
|
add = false;
|
|
}
|
|
}
|
|
|
|
if (!QEMU_IS_ALIGNED(int128_get64(section->size), page_size) ||
|
|
!QEMU_IS_ALIGNED(section->offset_within_address_space, page_size)) {
|
|
/* Not page aligned, so we can not map as RAM */
|
|
add = false;
|
|
}
|
|
|
|
mem = hvf_find_overlap_slot(
|
|
section->offset_within_address_space,
|
|
int128_get64(section->size));
|
|
|
|
if (mem && add) {
|
|
if (mem->size == int128_get64(section->size) &&
|
|
mem->start == section->offset_within_address_space &&
|
|
mem->mem == (memory_region_get_ram_ptr(area) +
|
|
section->offset_within_region)) {
|
|
return; /* Same region was attempted to register, go away. */
|
|
}
|
|
}
|
|
|
|
/* Region needs to be reset. set the size to 0 and remap it. */
|
|
if (mem) {
|
|
mem->size = 0;
|
|
if (do_hvf_set_memory(mem, 0)) {
|
|
error_report("Failed to reset overlapping slot");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
if (!add) {
|
|
return;
|
|
}
|
|
|
|
if (area->readonly ||
|
|
(!memory_region_is_ram(area) && memory_region_is_romd(area))) {
|
|
flags = HV_MEMORY_READ | HV_MEMORY_EXEC;
|
|
} else {
|
|
flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
|
|
}
|
|
|
|
/* Now make a new slot. */
|
|
int x;
|
|
|
|
for (x = 0; x < hvf_state->num_slots; ++x) {
|
|
mem = &hvf_state->slots[x];
|
|
if (!mem->size) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (x == hvf_state->num_slots) {
|
|
error_report("No free slots");
|
|
abort();
|
|
}
|
|
|
|
mem->size = int128_get64(section->size);
|
|
mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
|
|
mem->start = section->offset_within_address_space;
|
|
mem->region = area;
|
|
|
|
if (do_hvf_set_memory(mem, flags)) {
|
|
error_report("Error registering new memory slot");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
|
|
{
|
|
if (!cpu->accel->dirty) {
|
|
hvf_get_registers(cpu);
|
|
cpu->accel->dirty = true;
|
|
}
|
|
}
|
|
|
|
static void hvf_cpu_synchronize_state(CPUState *cpu)
|
|
{
|
|
if (!cpu->accel->dirty) {
|
|
run_on_cpu(cpu, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static void do_hvf_cpu_synchronize_set_dirty(CPUState *cpu,
|
|
run_on_cpu_data arg)
|
|
{
|
|
/* QEMU state is the reference, push it to HVF now and on next entry */
|
|
cpu->accel->dirty = true;
|
|
}
|
|
|
|
static void hvf_cpu_synchronize_post_reset(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void hvf_cpu_synchronize_post_init(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void hvf_cpu_synchronize_pre_loadvm(CPUState *cpu)
|
|
{
|
|
run_on_cpu(cpu, do_hvf_cpu_synchronize_set_dirty, RUN_ON_CPU_NULL);
|
|
}
|
|
|
|
static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
|
|
{
|
|
hvf_slot *slot;
|
|
|
|
slot = hvf_find_overlap_slot(
|
|
section->offset_within_address_space,
|
|
int128_get64(section->size));
|
|
|
|
/* protect region against writes; begin tracking it */
|
|
if (on) {
|
|
slot->flags |= HVF_SLOT_LOG;
|
|
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
|
|
HV_MEMORY_READ | HV_MEMORY_EXEC);
|
|
/* stop tracking region*/
|
|
} else {
|
|
slot->flags &= ~HVF_SLOT_LOG;
|
|
hv_vm_protect((uintptr_t)slot->start, (size_t)slot->size,
|
|
HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC);
|
|
}
|
|
}
|
|
|
|
static void hvf_log_start(MemoryListener *listener,
|
|
MemoryRegionSection *section, int old, int new)
|
|
{
|
|
if (old != 0) {
|
|
return;
|
|
}
|
|
|
|
hvf_set_dirty_tracking(section, 1);
|
|
}
|
|
|
|
static void hvf_log_stop(MemoryListener *listener,
|
|
MemoryRegionSection *section, int old, int new)
|
|
{
|
|
if (new != 0) {
|
|
return;
|
|
}
|
|
|
|
hvf_set_dirty_tracking(section, 0);
|
|
}
|
|
|
|
static void hvf_log_sync(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
/*
|
|
* sync of dirty pages is handled elsewhere; just make sure we keep
|
|
* tracking the region.
|
|
*/
|
|
hvf_set_dirty_tracking(section, 1);
|
|
}
|
|
|
|
static void hvf_region_add(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
hvf_set_phys_mem(section, true);
|
|
}
|
|
|
|
static void hvf_region_del(MemoryListener *listener,
|
|
MemoryRegionSection *section)
|
|
{
|
|
hvf_set_phys_mem(section, false);
|
|
}
|
|
|
|
static MemoryListener hvf_memory_listener = {
|
|
.name = "hvf",
|
|
.priority = MEMORY_LISTENER_PRIORITY_ACCEL,
|
|
.region_add = hvf_region_add,
|
|
.region_del = hvf_region_del,
|
|
.log_start = hvf_log_start,
|
|
.log_stop = hvf_log_stop,
|
|
.log_sync = hvf_log_sync,
|
|
};
|
|
|
|
static void dummy_signal(int sig)
|
|
{
|
|
}
|
|
|
|
bool hvf_allowed;
|
|
|
|
static int hvf_accel_init(MachineState *ms)
|
|
{
|
|
int x;
|
|
hv_return_t ret;
|
|
HVFState *s;
|
|
int pa_range = 36;
|
|
MachineClass *mc = MACHINE_GET_CLASS(ms);
|
|
|
|
if (mc->hvf_get_physical_address_range) {
|
|
pa_range = mc->hvf_get_physical_address_range(ms);
|
|
if (pa_range < 0) {
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = hvf_arch_vm_create(ms, (uint32_t)pa_range);
|
|
assert_hvf_ok(ret);
|
|
|
|
s = g_new0(HVFState, 1);
|
|
|
|
s->num_slots = ARRAY_SIZE(s->slots);
|
|
for (x = 0; x < s->num_slots; ++x) {
|
|
s->slots[x].size = 0;
|
|
s->slots[x].slot_id = x;
|
|
}
|
|
|
|
QTAILQ_INIT(&s->hvf_sw_breakpoints);
|
|
|
|
hvf_state = s;
|
|
memory_listener_register(&hvf_memory_listener, &address_space_memory);
|
|
|
|
return hvf_arch_init();
|
|
}
|
|
|
|
static inline int hvf_gdbstub_sstep_flags(void)
|
|
{
|
|
return SSTEP_ENABLE | SSTEP_NOIRQ;
|
|
}
|
|
|
|
static void hvf_accel_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
AccelClass *ac = ACCEL_CLASS(oc);
|
|
ac->name = "HVF";
|
|
ac->init_machine = hvf_accel_init;
|
|
ac->allowed = &hvf_allowed;
|
|
ac->gdbstub_supported_sstep_flags = hvf_gdbstub_sstep_flags;
|
|
}
|
|
|
|
static const TypeInfo hvf_accel_type = {
|
|
.name = TYPE_HVF_ACCEL,
|
|
.parent = TYPE_ACCEL,
|
|
.class_init = hvf_accel_class_init,
|
|
};
|
|
|
|
static void hvf_type_init(void)
|
|
{
|
|
type_register_static(&hvf_accel_type);
|
|
}
|
|
|
|
type_init(hvf_type_init);
|
|
|
|
static void hvf_vcpu_destroy(CPUState *cpu)
|
|
{
|
|
hv_return_t ret = hv_vcpu_destroy(cpu->accel->fd);
|
|
assert_hvf_ok(ret);
|
|
|
|
hvf_arch_vcpu_destroy(cpu);
|
|
g_free(cpu->accel);
|
|
cpu->accel = NULL;
|
|
}
|
|
|
|
static int hvf_init_vcpu(CPUState *cpu)
|
|
{
|
|
int r;
|
|
|
|
cpu->accel = g_new0(AccelCPUState, 1);
|
|
|
|
/* init cpu signals */
|
|
struct sigaction sigact;
|
|
|
|
memset(&sigact, 0, sizeof(sigact));
|
|
sigact.sa_handler = dummy_signal;
|
|
sigaction(SIG_IPI, &sigact, NULL);
|
|
|
|
pthread_sigmask(SIG_BLOCK, NULL, &cpu->accel->unblock_ipi_mask);
|
|
sigdelset(&cpu->accel->unblock_ipi_mask, SIG_IPI);
|
|
|
|
#ifdef __aarch64__
|
|
r = hv_vcpu_create(&cpu->accel->fd,
|
|
(hv_vcpu_exit_t **)&cpu->accel->exit, NULL);
|
|
#else
|
|
r = hv_vcpu_create(&cpu->accel->fd, HV_VCPU_DEFAULT);
|
|
#endif
|
|
cpu->accel->dirty = true;
|
|
assert_hvf_ok(r);
|
|
|
|
cpu->accel->guest_debug_enabled = false;
|
|
|
|
return hvf_arch_init_vcpu(cpu);
|
|
}
|
|
|
|
/*
|
|
* The HVF-specific vCPU thread function. This one should only run when the host
|
|
* CPU supports the VMX "unrestricted guest" feature.
|
|
*/
|
|
static void *hvf_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
int r;
|
|
|
|
assert(hvf_enabled());
|
|
|
|
rcu_register_thread();
|
|
|
|
bql_lock();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
current_cpu = cpu;
|
|
|
|
hvf_init_vcpu(cpu);
|
|
|
|
/* signal CPU creation */
|
|
cpu_thread_signal_created(cpu);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = hvf_vcpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
hvf_vcpu_destroy(cpu);
|
|
cpu_thread_signal_destroyed(cpu);
|
|
bql_unlock();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
static void hvf_start_vcpu_thread(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
/*
|
|
* HVF currently does not support TCG, and only runs in
|
|
* unrestricted-guest mode.
|
|
*/
|
|
assert(hvf_enabled());
|
|
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, hvf_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
}
|
|
|
|
static int hvf_insert_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
|
|
{
|
|
struct hvf_sw_breakpoint *bp;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = hvf_find_sw_breakpoint(cpu, addr);
|
|
if (bp) {
|
|
bp->use_count++;
|
|
return 0;
|
|
}
|
|
|
|
bp = g_new(struct hvf_sw_breakpoint, 1);
|
|
bp->pc = addr;
|
|
bp->use_count = 1;
|
|
err = hvf_arch_insert_sw_breakpoint(cpu, bp);
|
|
if (err) {
|
|
g_free(bp);
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_INSERT_HEAD(&hvf_state->hvf_sw_breakpoints, bp, entry);
|
|
} else {
|
|
err = hvf_arch_insert_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
err = hvf_update_guest_debug(cpu);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int hvf_remove_breakpoint(CPUState *cpu, int type, vaddr addr, vaddr len)
|
|
{
|
|
struct hvf_sw_breakpoint *bp;
|
|
int err;
|
|
|
|
if (type == GDB_BREAKPOINT_SW) {
|
|
bp = hvf_find_sw_breakpoint(cpu, addr);
|
|
if (!bp) {
|
|
return -ENOENT;
|
|
}
|
|
|
|
if (bp->use_count > 1) {
|
|
bp->use_count--;
|
|
return 0;
|
|
}
|
|
|
|
err = hvf_arch_remove_sw_breakpoint(cpu, bp);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
} else {
|
|
err = hvf_arch_remove_hw_breakpoint(addr, len, type);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
|
|
CPU_FOREACH(cpu) {
|
|
err = hvf_update_guest_debug(cpu);
|
|
if (err) {
|
|
return err;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void hvf_remove_all_breakpoints(CPUState *cpu)
|
|
{
|
|
struct hvf_sw_breakpoint *bp, *next;
|
|
CPUState *tmpcpu;
|
|
|
|
QTAILQ_FOREACH_SAFE(bp, &hvf_state->hvf_sw_breakpoints, entry, next) {
|
|
if (hvf_arch_remove_sw_breakpoint(cpu, bp) != 0) {
|
|
/* Try harder to find a CPU that currently sees the breakpoint. */
|
|
CPU_FOREACH(tmpcpu)
|
|
{
|
|
if (hvf_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
QTAILQ_REMOVE(&hvf_state->hvf_sw_breakpoints, bp, entry);
|
|
g_free(bp);
|
|
}
|
|
hvf_arch_remove_all_hw_breakpoints();
|
|
|
|
CPU_FOREACH(cpu) {
|
|
hvf_update_guest_debug(cpu);
|
|
}
|
|
}
|
|
|
|
static void hvf_accel_ops_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
AccelOpsClass *ops = ACCEL_OPS_CLASS(oc);
|
|
|
|
ops->create_vcpu_thread = hvf_start_vcpu_thread;
|
|
ops->kick_vcpu_thread = hvf_kick_vcpu_thread;
|
|
|
|
ops->synchronize_post_reset = hvf_cpu_synchronize_post_reset;
|
|
ops->synchronize_post_init = hvf_cpu_synchronize_post_init;
|
|
ops->synchronize_state = hvf_cpu_synchronize_state;
|
|
ops->synchronize_pre_loadvm = hvf_cpu_synchronize_pre_loadvm;
|
|
|
|
ops->insert_breakpoint = hvf_insert_breakpoint;
|
|
ops->remove_breakpoint = hvf_remove_breakpoint;
|
|
ops->remove_all_breakpoints = hvf_remove_all_breakpoints;
|
|
ops->update_guest_debug = hvf_update_guest_debug;
|
|
ops->supports_guest_debug = hvf_arch_supports_guest_debug;
|
|
};
|
|
static const TypeInfo hvf_accel_ops_type = {
|
|
.name = ACCEL_OPS_NAME("hvf"),
|
|
|
|
.parent = TYPE_ACCEL_OPS,
|
|
.class_init = hvf_accel_ops_class_init,
|
|
.abstract = true,
|
|
};
|
|
static void hvf_accel_ops_register_types(void)
|
|
{
|
|
type_register_static(&hvf_accel_ops_type);
|
|
}
|
|
type_init(hvf_accel_ops_register_types);
|