mirror of https://github.com/llvm-mirror/libcxx
You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
527 lines
14 KiB
C++
527 lines
14 KiB
C++
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// REQUIRES: long_tests
|
|
|
|
// <random>
|
|
|
|
// template<class IntType = int>
|
|
// class binomial_distribution
|
|
|
|
// template<class _URNG> result_type operator()(_URNG& g);
|
|
|
|
#include <random>
|
|
#include <numeric>
|
|
#include <vector>
|
|
#include <cassert>
|
|
|
|
#include "test_macros.h"
|
|
|
|
template <class T>
|
|
inline
|
|
T
|
|
sqr(T x)
|
|
{
|
|
return x * x;
|
|
}
|
|
|
|
void
|
|
test1()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937_64 G;
|
|
G g;
|
|
D d(5, .75);
|
|
const int N = 1000000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.04);
|
|
}
|
|
|
|
void
|
|
test2()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(30, .03125);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
|
}
|
|
|
|
void
|
|
test3()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(40, .25);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs((skew - x_skew) / x_skew) < 0.03);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.3);
|
|
}
|
|
|
|
void
|
|
test4()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(40, 0);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
//double dev = std::sqrt(var);
|
|
// In this case:
|
|
// skew computes to 0./0. == nan
|
|
// kurtosis computes to 0./0. == nan
|
|
// x_skew == inf
|
|
// x_kurtosis == inf
|
|
// These tests are commented out because UBSan warns about division by 0
|
|
// skew /= u.size() * dev * var;
|
|
// kurtosis /= u.size() * var * var;
|
|
// kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(mean == x_mean);
|
|
assert(var == x_var);
|
|
// assert(skew == x_skew);
|
|
// assert(kurtosis == x_kurtosis);
|
|
}
|
|
|
|
void
|
|
test5()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(40, 1);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
// double dev = std::sqrt(var);
|
|
// In this case:
|
|
// skew computes to 0./0. == nan
|
|
// kurtosis computes to 0./0. == nan
|
|
// x_skew == -inf
|
|
// x_kurtosis == inf
|
|
// These tests are commented out because UBSan warns about division by 0
|
|
// skew /= u.size() * dev * var;
|
|
// kurtosis /= u.size() * var * var;
|
|
// kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(mean == x_mean);
|
|
assert(var == x_var);
|
|
// assert(skew == x_skew);
|
|
// assert(kurtosis == x_kurtosis);
|
|
}
|
|
|
|
void
|
|
test6()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(400, 0.5);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs(skew - x_skew) < 0.01);
|
|
assert(std::abs(kurtosis - x_kurtosis) < 0.01);
|
|
}
|
|
|
|
void
|
|
test7()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(1, 0.5);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
double dev = std::sqrt(var);
|
|
skew /= u.size() * dev * var;
|
|
kurtosis /= u.size() * var * var;
|
|
kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(std::abs((mean - x_mean) / x_mean) < 0.01);
|
|
assert(std::abs((var - x_var) / x_var) < 0.01);
|
|
assert(std::abs(skew - x_skew) < 0.01);
|
|
assert(std::abs((kurtosis - x_kurtosis) / x_kurtosis) < 0.01);
|
|
}
|
|
|
|
void
|
|
test8()
|
|
{
|
|
const int N = 100000;
|
|
std::mt19937 gen1;
|
|
std::mt19937 gen2;
|
|
|
|
std::binomial_distribution<> dist1(5, 0.1);
|
|
std::binomial_distribution<unsigned> dist2(5, 0.1);
|
|
|
|
for(int i = 0; i < N; ++i) {
|
|
int r1 = dist1(gen1);
|
|
unsigned r2 = dist2(gen2);
|
|
assert(r1 >= 0);
|
|
assert(static_cast<unsigned>(r1) == r2);
|
|
}
|
|
}
|
|
|
|
void
|
|
test9()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0, 0.005);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
// double dev = std::sqrt(var);
|
|
// In this case:
|
|
// skew computes to 0./0. == nan
|
|
// kurtosis computes to 0./0. == nan
|
|
// x_skew == inf
|
|
// x_kurtosis == inf
|
|
// These tests are commented out because UBSan warns about division by 0
|
|
// skew /= u.size() * dev * var;
|
|
// kurtosis /= u.size() * var * var;
|
|
// kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(mean == x_mean);
|
|
assert(var == x_var);
|
|
// assert(skew == x_skew);
|
|
// assert(kurtosis == x_kurtosis);
|
|
}
|
|
|
|
void
|
|
test10()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0, 0);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
// double dev = std::sqrt(var);
|
|
// In this case:
|
|
// skew computes to 0./0. == nan
|
|
// kurtosis computes to 0./0. == nan
|
|
// x_skew == inf
|
|
// x_kurtosis == inf
|
|
// These tests are commented out because UBSan warns about division by 0
|
|
// skew /= u.size() * dev * var;
|
|
// kurtosis /= u.size() * var * var;
|
|
// kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(mean == x_mean);
|
|
assert(var == x_var);
|
|
// assert(skew == x_skew);
|
|
// assert(kurtosis == x_kurtosis);
|
|
}
|
|
|
|
void
|
|
test11()
|
|
{
|
|
typedef std::binomial_distribution<> D;
|
|
typedef std::mt19937 G;
|
|
G g;
|
|
D d(0, 1);
|
|
const int N = 100000;
|
|
std::vector<D::result_type> u;
|
|
for (int i = 0; i < N; ++i)
|
|
{
|
|
D::result_type v = d(g);
|
|
assert(d.min() <= v && v <= d.max());
|
|
u.push_back(v);
|
|
}
|
|
double mean = std::accumulate(u.begin(), u.end(),
|
|
double(0)) / u.size();
|
|
double var = 0;
|
|
double skew = 0;
|
|
double kurtosis = 0;
|
|
for (unsigned i = 0; i < u.size(); ++i)
|
|
{
|
|
double dbl = (u[i] - mean);
|
|
double d2 = sqr(dbl);
|
|
var += d2;
|
|
skew += dbl * d2;
|
|
kurtosis += d2 * d2;
|
|
}
|
|
var /= u.size();
|
|
// double dev = std::sqrt(var);
|
|
// In this case:
|
|
// skew computes to 0./0. == nan
|
|
// kurtosis computes to 0./0. == nan
|
|
// x_skew == -inf
|
|
// x_kurtosis == inf
|
|
// These tests are commented out because UBSan warns about division by 0
|
|
// skew /= u.size() * dev * var;
|
|
// kurtosis /= u.size() * var * var;
|
|
// kurtosis -= 3;
|
|
double x_mean = d.t() * d.p();
|
|
double x_var = x_mean*(1-d.p());
|
|
// double x_skew = (1-2*d.p()) / std::sqrt(x_var);
|
|
// double x_kurtosis = (1-6*d.p()*(1-d.p())) / x_var;
|
|
assert(mean == x_mean);
|
|
assert(var == x_var);
|
|
// assert(skew == x_skew);
|
|
// assert(kurtosis == x_kurtosis);
|
|
}
|
|
|
|
int main(int, char**)
|
|
{
|
|
test1();
|
|
test2();
|
|
test3();
|
|
test4();
|
|
test5();
|
|
test6();
|
|
test7();
|
|
test8();
|
|
test9();
|
|
test10();
|
|
test11();
|
|
|
|
return 0;
|
|
}
|