You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
concurrentqueue/benchmarks/tbb/internal/_flow_graph_node_impl.h

743 lines
29 KiB
C++

/*
Copyright 2005-2014 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks. Threading Building Blocks is free software;
you can redistribute it and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. Threading Building Blocks is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of
the GNU General Public License along with Threading Building Blocks; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software library without
restriction. Specifically, if other files instantiate templates or use macros or inline
functions from this file, or you compile this file and link it with other files to produce
an executable, this file does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.
*/
#ifndef __TBB__flow_graph_node_impl_H
#define __TBB__flow_graph_node_impl_H
#ifndef __TBB_flow_graph_H
#error Do not #include this internal file directly; use public TBB headers instead.
#endif
#include "_flow_graph_item_buffer_impl.h"
//! @cond INTERNAL
namespace internal {
using tbb::internal::aggregated_operation;
using tbb::internal::aggregating_functor;
using tbb::internal::aggregator;
template< typename T, typename A >
class function_input_queue : public item_buffer<T,A> {
public:
bool pop( T& t ) {
return this->pop_front( t );
}
bool push( T& t ) {
return this->push_back( t );
}
};
//! Input and scheduling for a function node that takes a type Input as input
// The only up-ref is apply_body_impl, which should implement the function
// call and any handling of the result.
template< typename Input, typename A, typename ImplType >
class function_input_base : public receiver<Input>, tbb::internal::no_assign {
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
enum op_type {reg_pred, rem_pred, app_body, try_fwd, tryput_bypass, app_body_bypass
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
, add_blt_pred, del_blt_pred,
blt_pred_cnt, blt_pred_cpy // create vector copies of preds and succs
#endif
};
typedef function_input_base<Input, A, ImplType> my_class;
public:
//! The input type of this receiver
typedef Input input_type;
typedef sender<Input> predecessor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
#endif
//! Constructor for function_input_base
function_input_base( graph &g, size_t max_concurrency, function_input_queue<input_type,A> *q = NULL )
: my_graph(g), my_max_concurrency(max_concurrency), my_concurrency(0),
my_queue(q), forwarder_busy(false) {
my_predecessors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
//! Copy constructor
function_input_base( const function_input_base& src, function_input_queue<input_type,A> *q = NULL ) :
receiver<Input>(), tbb::internal::no_assign(),
my_graph(src.my_graph), my_max_concurrency(src.my_max_concurrency),
my_concurrency(0), my_queue(q), forwarder_busy(false)
{
my_predecessors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
}
//! Destructor
virtual ~function_input_base() {
if ( my_queue ) delete my_queue;
}
//! Put to the node, returning a task if available
virtual task * try_put_task( const input_type &t ) {
if ( my_max_concurrency == 0 ) {
return create_body_task( t );
} else {
my_operation op_data(t, tryput_bypass);
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED ) {
return op_data.bypass_t;
}
return NULL;
}
}
//! Adds src to the list of cached predecessors.
/* override */ bool register_predecessor( predecessor_type &src ) {
my_operation op_data(reg_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
//! Removes src from the list of cached predecessors.
/* override */ bool remove_predecessor( predecessor_type &src ) {
my_operation op_data(rem_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//! Adds to list of predecessors added by make_edge
/*override*/ void internal_add_built_predecessor( predecessor_type &src) {
my_operation op_data(add_blt_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
}
//! removes from to list of predecessors (used by remove_edge)
/*override*/ void internal_delete_built_predecessor( predecessor_type &src) {
my_operation op_data(del_blt_pred);
op_data.r = &src;
my_aggregator.execute(&op_data);
}
/*override*/ size_t predecessor_count() {
my_operation op_data(blt_pred_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
/*override*/ void copy_predecessors(predecessor_vector_type &v) {
my_operation op_data(blt_pred_cpy);
op_data.predv = &v;
my_aggregator.execute(&op_data);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
void reset_function_input_base( __TBB_PFG_RESET_ARG(reset_flags f)) {
my_concurrency = 0;
if(my_queue) {
my_queue->reset();
}
reset_receiver(__TBB_PFG_RESET_ARG(f));
forwarder_busy = false;
}
graph& my_graph;
const size_t my_max_concurrency;
size_t my_concurrency;
function_input_queue<input_type, A> *my_queue;
predecessor_cache<input_type, null_mutex > my_predecessors;
/*override*/void reset_receiver( __TBB_PFG_RESET_ARG(reset_flags f)) {
my_predecessors.reset(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
__TBB_ASSERT(!(f & rf_extract) || my_predecessors.empty(), "function_input_base reset failed");
#endif
}
private:
friend class apply_body_task_bypass< my_class, input_type >;
friend class forward_task_bypass< my_class >;
class my_operation : public aggregated_operation< my_operation > {
public:
char type;
union {
input_type *elem;
predecessor_type *r;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
size_t cnt_val;
predecessor_vector_type *predv;
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
};
tbb::task *bypass_t;
my_operation(const input_type& e, op_type t) :
type(char(t)), elem(const_cast<input_type*>(&e)) {}
my_operation(op_type t) : type(char(t)), r(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<my_class, my_operation> my_handler;
friend class internal::aggregating_functor<my_class, my_operation>;
aggregator< my_handler, my_operation > my_aggregator;
void handle_operations(my_operation *op_list) {
my_operation *tmp;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_pred:
my_predecessors.add(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
if (!forwarder_busy) {
forwarder_busy = true;
spawn_forward_task();
}
break;
case rem_pred:
my_predecessors.remove(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
break;
case app_body:
__TBB_ASSERT(my_max_concurrency != 0, NULL);
--my_concurrency;
__TBB_store_with_release(tmp->status, SUCCEEDED);
if (my_concurrency<my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
spawn_body_task(i);
}
}
break;
case app_body_bypass: {
task * new_task = NULL;
__TBB_ASSERT(my_max_concurrency != 0, NULL);
--my_concurrency;
if (my_concurrency<my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
new_task = create_body_task(i);
}
}
tmp->bypass_t = new_task;
__TBB_store_with_release(tmp->status, SUCCEEDED);
}
break;
case tryput_bypass: internal_try_put_task(tmp); break;
case try_fwd: internal_forward(tmp); break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
case add_blt_pred: {
my_predecessors.internal_add_built_predecessor(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
}
break;
case del_blt_pred:
my_predecessors.internal_delete_built_predecessor(*(tmp->r));
__TBB_store_with_release(tmp->status, SUCCEEDED);
break;
case blt_pred_cnt:
tmp->cnt_val = my_predecessors.predecessor_count();
__TBB_store_with_release(tmp->status, SUCCEEDED);
break;
case blt_pred_cpy:
my_predecessors.copy_predecessors( *(tmp->predv) );
__TBB_store_with_release(tmp->status, SUCCEEDED);
break;
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
}
}
}
//! Put to the node, but return the task instead of enqueueing it
void internal_try_put_task(my_operation *op) {
__TBB_ASSERT(my_max_concurrency != 0, NULL);
if (my_concurrency < my_max_concurrency) {
++my_concurrency;
task * new_task = create_body_task(*(op->elem));
op->bypass_t = new_task;
__TBB_store_with_release(op->status, SUCCEEDED);
} else if ( my_queue && my_queue->push(*(op->elem)) ) {
op->bypass_t = SUCCESSFULLY_ENQUEUED;
__TBB_store_with_release(op->status, SUCCEEDED);
} else {
op->bypass_t = NULL;
__TBB_store_with_release(op->status, FAILED);
}
}
//! Tries to spawn bodies if available and if concurrency allows
void internal_forward(my_operation *op) {
op->bypass_t = NULL;
if (my_concurrency<my_max_concurrency || !my_max_concurrency) {
input_type i;
bool item_was_retrieved = false;
if ( my_queue )
item_was_retrieved = my_queue->pop(i);
else
item_was_retrieved = my_predecessors.get_item(i);
if (item_was_retrieved) {
++my_concurrency;
op->bypass_t = create_body_task(i);
__TBB_store_with_release(op->status, SUCCEEDED);
return;
}
}
__TBB_store_with_release(op->status, FAILED);
forwarder_busy = false;
}
//! Applies the body to the provided input
// then decides if more work is available
void apply_body( input_type &i ) {
task *new_task = apply_body_bypass(i);
if(!new_task) return;
if(new_task == SUCCESSFULLY_ENQUEUED) return;
FLOW_SPAWN(*new_task);
return;
}
//! Applies the body to the provided input
// then decides if more work is available
task * apply_body_bypass( input_type &i ) {
task * new_task = static_cast<ImplType *>(this)->apply_body_impl_bypass(i);
if ( my_max_concurrency != 0 ) {
my_operation op_data(app_body_bypass); // tries to pop an item or get_item, enqueues another apply_body
my_aggregator.execute(&op_data);
tbb::task *ttask = op_data.bypass_t;
new_task = combine_tasks(new_task, ttask);
}
return new_task;
}
//! allocates a task to call apply_body( input )
inline task * create_body_task( const input_type &input ) {
task* tp = my_graph.root_task();
return (tp) ?
new(task::allocate_additional_child_of(*tp))
apply_body_task_bypass < my_class, input_type >(*this, input) :
NULL;
}
//! Spawns a task that calls apply_body( input )
inline void spawn_body_task( const input_type &input ) {
task* tp = create_body_task(input);
// tp == NULL => g.reset(), which shouldn't occur in concurrent context
if(tp) {
FLOW_SPAWN(*tp);
}
}
//! This is executed by an enqueued task, the "forwarder"
task *forward_task() {
my_operation op_data(try_fwd);
task *rval = NULL;
do {
op_data.status = WAIT;
my_aggregator.execute(&op_data);
if(op_data.status == SUCCEEDED) {
tbb::task *ttask = op_data.bypass_t;
rval = combine_tasks(rval, ttask);
}
} while (op_data.status == SUCCEEDED);
return rval;
}
inline task *create_forward_task() {
task* tp = my_graph.root_task();
return (tp) ?
new(task::allocate_additional_child_of(*tp)) forward_task_bypass< my_class >(*this) :
NULL;
}
//! Spawns a task that calls forward()
inline void spawn_forward_task() {
task* tp = create_forward_task();
if(tp) {
FLOW_SPAWN(*tp);
}
}
}; // function_input_base
//! Implements methods for a function node that takes a type Input as input and sends
// a type Output to its successors.
template< typename Input, typename Output, typename A>
class function_input : public function_input_base<Input, A, function_input<Input,Output,A> > {
public:
typedef Input input_type;
typedef Output output_type;
typedef function_input<Input,Output,A> my_class;
typedef function_input_base<Input, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
function_input( graph &g, size_t max_concurrency, Body& body, function_input_queue<input_type,A> *q = NULL ) :
base_type(g, max_concurrency, q),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) {
}
//! Copy constructor
function_input( const function_input& src, input_queue_type *q = NULL ) :
base_type(src, q),
my_body( src.my_body->clone() ) {
}
~function_input() {
delete my_body;
}
template< typename Body >
Body copy_function_object() {
internal::function_body<input_type, output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
task * apply_body_impl_bypass( const input_type &i) {
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
// There is an extra copied needed to capture the
// body execution without the try_put
tbb::internal::fgt_begin_body( my_body );
output_type v = (*my_body)(i);
tbb::internal::fgt_end_body( my_body );
task * new_task = successors().try_put_task( v );
#else
task * new_task = successors().try_put_task( (*my_body)(i) );
#endif
return new_task;
}
protected:
void reset_function_input(__TBB_PFG_RESET_ARG(reset_flags f)) {
base_type::reset_function_input_base(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
if(f & rf_reset_bodies) my_body->reset_body();
#endif
}
function_body<input_type, output_type> *my_body;
virtual broadcast_cache<output_type > &successors() = 0;
}; // function_input
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// helper templates to reset the successor edges of the output ports of an multifunction_node
template<int N>
struct reset_element {
template<typename P>
static void reset_this(P &p, reset_flags f) {
(void)tbb::flow::get<N-1>(p).successors().reset(f);
reset_element<N-1>::reset_this(p, f);
}
template<typename P>
static bool this_empty(P &p) {
if(tbb::flow::get<N-1>(p).successors().empty())
return reset_element<N-1>::this_empty(p);
return false;
}
};
template<>
struct reset_element<1> {
template<typename P>
static void reset_this(P &p, reset_flags f) {
(void)tbb::flow::get<0>(p).successors().reset(f);
}
template<typename P>
static bool this_empty(P &p) {
return tbb::flow::get<0>(p).successors().empty();
}
};
#endif
//! Implements methods for a function node that takes a type Input as input
// and has a tuple of output ports specified.
template< typename Input, typename OutputPortSet, typename A>
class multifunction_input : public function_input_base<Input, A, multifunction_input<Input,OutputPortSet,A> > {
public:
static const int N = tbb::flow::tuple_size<OutputPortSet>::value;
typedef Input input_type;
typedef OutputPortSet output_ports_type;
typedef multifunction_input<Input,OutputPortSet,A> my_class;
typedef function_input_base<Input, A, my_class> base_type;
typedef function_input_queue<input_type, A> input_queue_type;
// constructor
template<typename Body>
multifunction_input(
graph &g,
size_t max_concurrency,
Body& body,
function_input_queue<input_type,A> *q = NULL ) :
base_type(g, max_concurrency, q),
my_body( new internal::multifunction_body_leaf<input_type, output_ports_type, Body>(body) ) {
}
//! Copy constructor
multifunction_input( const multifunction_input& src, input_queue_type *q = NULL ) :
base_type(src, q),
my_body( src.my_body->clone() ) {
}
~multifunction_input() {
delete my_body;
}
template< typename Body >
Body copy_function_object() {
internal::multifunction_body<input_type, output_ports_type> &body_ref = *this->my_body;
return dynamic_cast< internal::multifunction_body_leaf<input_type, output_ports_type, Body> & >(body_ref).get_body();
}
// for multifunction nodes we do not have a single successor as such. So we just tell
// the task we were successful.
task * apply_body_impl_bypass( const input_type &i) {
tbb::internal::fgt_begin_body( my_body );
(*my_body)(i, my_output_ports);
tbb::internal::fgt_end_body( my_body );
task * new_task = SUCCESSFULLY_ENQUEUED;
return new_task;
}
output_ports_type &output_ports(){ return my_output_ports; }
protected:
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) {
base_type::reset_function_input_base(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
reset_element<N>::reset_this(my_output_ports, f);
if(f & rf_reset_bodies) my_body->reset_body();
__TBB_ASSERT(!(f & rf_extract) || reset_element<N>::this_empty(my_output_ports), "multifunction_node reset failed");
#endif
}
multifunction_body<input_type, output_ports_type> *my_body;
output_ports_type my_output_ports;
}; // multifunction_input
// template to refer to an output port of a multifunction_node
template<size_t N, typename MOP>
typename tbb::flow::tuple_element<N, typename MOP::output_ports_type>::type &output_port(MOP &op) {
return tbb::flow::get<N>(op.output_ports());
}
// helper structs for split_node
template<int N>
struct emit_element {
template<typename T, typename P>
static void emit_this(const T &t, P &p) {
(void)tbb::flow::get<N-1>(p).try_put(tbb::flow::get<N-1>(t));
emit_element<N-1>::emit_this(t,p);
}
};
template<>
struct emit_element<1> {
template<typename T, typename P>
static void emit_this(const T &t, P &p) {
(void)tbb::flow::get<0>(p).try_put(tbb::flow::get<0>(t));
}
};
//! Implements methods for an executable node that takes continue_msg as input
template< typename Output >
class continue_input : public continue_receiver {
public:
//! The input type of this receiver
typedef continue_msg input_type;
//! The output type of this receiver
typedef Output output_type;
template< typename Body >
continue_input( graph &g, Body& body )
: my_graph_ptr(&g),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { }
template< typename Body >
continue_input( graph &g, int number_of_predecessors, Body& body )
: continue_receiver( number_of_predecessors ), my_graph_ptr(&g),
my_body( new internal::function_body_leaf< input_type, output_type, Body>(body) ) { }
continue_input( const continue_input& src ) : continue_receiver(src),
my_graph_ptr(src.my_graph_ptr), my_body( src.my_body->clone() ) {}
~continue_input() {
delete my_body;
}
template< typename Body >
Body copy_function_object() {
internal::function_body<input_type, output_type> &body_ref = *my_body;
return dynamic_cast< internal::function_body_leaf<input_type, output_type, Body> & >(body_ref).get_body();
}
/*override*/void reset_receiver( __TBB_PFG_RESET_ARG(reset_flags f)) {
continue_receiver::reset_receiver(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
if(f & rf_reset_bodies) my_body->reset_body();
#endif
}
protected:
graph* my_graph_ptr;
function_body<input_type, output_type> *my_body;
virtual broadcast_cache<output_type > &successors() = 0;
friend class apply_body_task_bypass< continue_input< Output >, continue_msg >;
//! Applies the body to the provided input
/* override */ task *apply_body_bypass( input_type ) {
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
// There is an extra copied needed to capture the
// body execution without the try_put
tbb::internal::fgt_begin_body( my_body );
output_type v = (*my_body)( continue_msg() );
tbb::internal::fgt_end_body( my_body );
return successors().try_put_task( v );
#else
return successors().try_put_task( (*my_body)( continue_msg() ) );
#endif
}
//! Spawns a task that applies the body
/* override */ task *execute( ) {
task* tp = my_graph_ptr->root_task();
return (tp) ?
new ( task::allocate_additional_child_of( *tp ) )
apply_body_task_bypass< continue_input< Output >, continue_msg >( *this, continue_msg() ) :
NULL;
}
}; // continue_input
//! Implements methods for both executable and function nodes that puts Output to its successors
template< typename Output >
class function_output : public sender<Output> {
public:
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
template<int N> friend struct reset_element;
#endif
typedef Output output_type;
typedef receiver<output_type> successor_type;
typedef broadcast_cache<output_type> broadcast_cache_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<successor_type *> successor_vector_type;
#endif
function_output() { my_successors.set_owner(this); }
function_output(const function_output & /*other*/) : sender<output_type>() {
my_successors.set_owner(this);
}
//! Adds a new successor to this node
/* override */ bool register_successor( receiver<output_type> &r ) {
successors().register_successor( r );
return true;
}
//! Removes a successor from this node
/* override */ bool remove_successor( receiver<output_type> &r ) {
successors().remove_successor( r );
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ void internal_add_built_successor( receiver<output_type> &r) {
successors().internal_add_built_successor( r );
}
/*override*/ void internal_delete_built_successor( receiver<output_type> &r) {
successors().internal_delete_built_successor( r );
}
/*override*/ size_t successor_count() {
return successors().successor_count();
}
/*override*/ void copy_successors( successor_vector_type &v) {
successors().copy_successors(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
// for multifunction_node. The function_body that implements
// the node will have an input and an output tuple of ports. To put
// an item to a successor, the body should
//
// get<I>(output_ports).try_put(output_value);
//
// return value will be bool returned from successors.try_put.
task *try_put_task(const output_type &i) { return my_successors.try_put_task(i); }
protected:
broadcast_cache_type my_successors;
broadcast_cache_type &successors() { return my_successors; }
}; // function_output
template< typename Output >
class multifunction_output : public function_output<Output> {
public:
typedef Output output_type;
typedef function_output<output_type> base_type;
using base_type::my_successors;
multifunction_output() : base_type() {my_successors.set_owner(this);}
multifunction_output( const multifunction_output &/*other*/) : base_type() { my_successors.set_owner(this); }
bool try_put(const output_type &i) {
task *res = my_successors.try_put_task(i);
if(!res) return false;
if(res != SUCCESSFULLY_ENQUEUED) FLOW_SPAWN(*res);
return true;
}
}; // multifunction_output
} // internal
#endif // __TBB__flow_graph_node_impl_H