You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
concurrentqueue/benchmarks/tbb/flow_graph.h

3238 lines
122 KiB
C++

/*
Copyright 2005-2014 Intel Corporation. All Rights Reserved.
This file is part of Threading Building Blocks. Threading Building Blocks is free software;
you can redistribute it and/or modify it under the terms of the GNU General Public License
version 2 as published by the Free Software Foundation. Threading Building Blocks is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details. You should have received a copy of
the GNU General Public License along with Threading Building Blocks; if not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
As a special exception, you may use this file as part of a free software library without
restriction. Specifically, if other files instantiate templates or use macros or inline
functions from this file, or you compile this file and link it with other files to produce
an executable, this file does not by itself cause the resulting executable to be covered
by the GNU General Public License. This exception does not however invalidate any other
reasons why the executable file might be covered by the GNU General Public License.
*/
#ifndef __TBB_flow_graph_H
#define __TBB_flow_graph_H
#include "tbb_stddef.h"
#include "atomic.h"
#include "spin_mutex.h"
#include "null_mutex.h"
#include "spin_rw_mutex.h"
#include "null_rw_mutex.h"
#include "task.h"
#include "cache_aligned_allocator.h"
#include "tbb_exception.h"
#include "internal/_aggregator_impl.h"
#include "tbb_profiling.h"
#if TBB_DEPRECATED_FLOW_ENQUEUE
#define FLOW_SPAWN(a) tbb::task::enqueue((a))
#else
#define FLOW_SPAWN(a) tbb::task::spawn((a))
#endif
// use the VC10 or gcc version of tuple if it is available.
#if __TBB_CPP11_TUPLE_PRESENT
#include <tuple>
namespace tbb {
namespace flow {
using std::tuple;
using std::tuple_size;
using std::tuple_element;
using std::get;
}
}
#else
#include "compat/tuple"
#endif
#include<list>
#include<queue>
/** @file
\brief The graph related classes and functions
There are some applications that best express dependencies as messages
passed between nodes in a graph. These messages may contain data or
simply act as signals that a predecessors has completed. The graph
class and its associated node classes can be used to express such
applications.
*/
namespace tbb {
namespace flow {
//! An enumeration the provides the two most common concurrency levels: unlimited and serial
enum concurrency { unlimited = 0, serial = 1 };
namespace interface7 {
namespace internal {
template<typename T, typename M> class successor_cache;
template<typename T, typename M> class broadcast_cache;
template<typename T, typename M> class round_robin_cache;
}
//! An empty class used for messages that mean "I'm done"
class continue_msg {};
template< typename T > class sender;
template< typename T > class receiver;
class continue_receiver;
//! Pure virtual template class that defines a sender of messages of type T
template< typename T >
class sender {
public:
//! The output type of this sender
typedef T output_type;
//! The successor type for this node
typedef receiver<T> successor_type;
virtual ~sender() {}
//! Add a new successor to this node
virtual bool register_successor( successor_type &r ) = 0;
//! Removes a successor from this node
virtual bool remove_successor( successor_type &r ) = 0;
//! Request an item from the sender
virtual bool try_get( T & ) { return false; }
//! Reserves an item in the sender
virtual bool try_reserve( T & ) { return false; }
//! Releases the reserved item
virtual bool try_release( ) { return false; }
//! Consumes the reserved item
virtual bool try_consume( ) { return false; }
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//! interface to record edges for traversal & deletion
virtual void internal_add_built_successor( successor_type & ) = 0;
virtual void internal_delete_built_successor( successor_type & ) = 0;
virtual void copy_successors( std::vector<successor_type *> &) = 0;
virtual size_t successor_count() = 0;
#endif
};
template< typename T > class limiter_node; // needed for resetting decrementer
template< typename R, typename B > class run_and_put_task;
static tbb::task * const SUCCESSFULLY_ENQUEUED = (task *)-1;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// flags to modify the behavior of the graph reset(). Can be combined.
enum reset_flags {
rf_reset_protocol = 0,
rf_reset_bodies = 1<<0, // delete the current node body, reset to a copy of the initial node body.
rf_extract = 1<<1 // delete edges (extract() for single node, reset() for graph.)
};
#define __TBB_PFG_RESET_ARG(exp) exp
#define __TBB_COMMA ,
#else
#define __TBB_PFG_RESET_ARG(exp) /* nothing */
#define __TBB_COMMA /* nothing */
#endif
// enqueue left task if necessary. Returns the non-enqueued task if there is one.
static inline tbb::task *combine_tasks( tbb::task * left, tbb::task * right) {
// if no RHS task, don't change left.
if(right == NULL) return left;
// right != NULL
if(left == NULL) return right;
if(left == SUCCESSFULLY_ENQUEUED) return right;
// left contains a task
if(right != SUCCESSFULLY_ENQUEUED) {
// both are valid tasks
FLOW_SPAWN(*left);
return right;
}
return left;
}
//! Pure virtual template class that defines a receiver of messages of type T
template< typename T >
class receiver {
public:
//! The input type of this receiver
typedef T input_type;
//! The predecessor type for this node
typedef sender<T> predecessor_type;
//! Destructor
virtual ~receiver() {}
//! Put an item to the receiver
bool try_put( const T& t ) {
task *res = try_put_task(t);
if(!res) return false;
if (res != SUCCESSFULLY_ENQUEUED) FLOW_SPAWN(*res);
return true;
}
//! put item to successor; return task to run the successor if possible.
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
virtual task *try_put_task(const T& t) = 0;
public:
//! Add a predecessor to the node
virtual bool register_predecessor( predecessor_type & ) { return false; }
//! Remove a predecessor from the node
virtual bool remove_predecessor( predecessor_type & ) { return false; }
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
virtual void internal_add_built_predecessor( predecessor_type & ) = 0;
virtual void internal_delete_built_predecessor( predecessor_type & ) = 0;
virtual void copy_predecessors( std::vector<predecessor_type *> & ) = 0;
virtual size_t predecessor_count() = 0;
#endif
protected:
//! put receiver back in initial state
template<typename U> friend class limiter_node;
virtual void reset_receiver(__TBB_PFG_RESET_ARG(reset_flags f = rf_reset_protocol ) ) = 0;
template<typename TT, typename M>
friend class internal::successor_cache;
virtual bool is_continue_receiver() { return false; }
};
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
//* holder of edges both for caches and for those nodes which do not have predecessor caches.
// C == receiver< ... > or sender< ... >, depending.
template<typename C>
class edge_container {
public:
typedef std::vector<C *> edge_vector;
void add_edge( C &s) {
built_edges.push_back( &s );
}
void delete_edge( C &s) {
for ( typename edge_vector::iterator i = built_edges.begin(); i != built_edges.end(); ++i ) {
if ( *i == &s ) {
(void)built_edges.erase(i);
return; // only remove one predecessor per request
}
}
}
void copy_edges( edge_vector &v) {
v = built_edges;
}
size_t edge_count() {
return (size_t)(built_edges.size());
}
void clear() {
built_edges.clear();
}
template< typename S > void sender_extract( S &s );
template< typename R > void receiver_extract( R &r );
private:
edge_vector built_edges;
};
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Base class for receivers of completion messages
/** These receivers automatically reset, but cannot be explicitly waited on */
class continue_receiver : public receiver< continue_msg > {
public:
//! The input type
typedef continue_msg input_type;
//! The predecessor type for this node
typedef sender< continue_msg > predecessor_type;
//! Constructor
continue_receiver( int number_of_predecessors = 0 ) {
my_predecessor_count = my_initial_predecessor_count = number_of_predecessors;
my_current_count = 0;
}
//! Copy constructor
continue_receiver( const continue_receiver& src ) : receiver<continue_msg>() {
my_predecessor_count = my_initial_predecessor_count = src.my_initial_predecessor_count;
my_current_count = 0;
}
//! Destructor
virtual ~continue_receiver() { }
//! Increments the trigger threshold
/* override */ bool register_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
++my_predecessor_count;
return true;
}
//! Decrements the trigger threshold
/** Does not check to see if the removal of the predecessor now makes the current count
exceed the new threshold. So removing a predecessor while the graph is active can cause
unexpected results. */
/* override */ bool remove_predecessor( predecessor_type & ) {
spin_mutex::scoped_lock l(my_mutex);
--my_predecessor_count;
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
/*override*/ void internal_add_built_predecessor( predecessor_type &s) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.add_edge( s );
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &s) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.delete_edge(s);
}
/*override*/ void copy_predecessors( predecessor_vector_type &v) {
spin_mutex::scoped_lock l(my_mutex);
my_built_predecessors.copy_edges(v);
}
/*override*/ size_t predecessor_count() {
spin_mutex::scoped_lock l(my_mutex);
return my_built_predecessors.edge_count();
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
// execute body is supposed to be too small to create a task for.
/* override */ task *try_put_task( const input_type & ) {
{
spin_mutex::scoped_lock l(my_mutex);
if ( ++my_current_count < my_predecessor_count )
return SUCCESSFULLY_ENQUEUED;
else
my_current_count = 0;
}
task * res = execute();
if(!res) return SUCCESSFULLY_ENQUEUED;
return res;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<predecessor_type> my_built_predecessors;
#endif
spin_mutex my_mutex;
int my_predecessor_count;
int my_current_count;
int my_initial_predecessor_count;
// the friend declaration in the base class did not eliminate the "protected class"
// error in gcc 4.1.2
template<typename U> friend class limiter_node;
/*override*/void reset_receiver( __TBB_PFG_RESET_ARG(reset_flags f) )
{
my_current_count = 0;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
if(f & rf_extract) {
my_built_predecessors.receiver_extract(*this);
my_predecessor_count = my_initial_predecessor_count;
}
#endif
}
//! Does whatever should happen when the threshold is reached
/** This should be very fast or else spawn a task. This is
called while the sender is blocked in the try_put(). */
virtual task * execute() = 0;
template<typename TT, typename M>
friend class internal::successor_cache;
/*override*/ bool is_continue_receiver() { return true; }
};
} // interface7
} // flow
} // tbb
#include "internal/_flow_graph_trace_impl.h"
namespace tbb {
namespace flow {
namespace interface7 {
#include "internal/_flow_graph_types_impl.h"
#include "internal/_flow_graph_impl.h"
using namespace internal::graph_policy_namespace;
class graph;
class graph_node;
template <typename GraphContainerType, typename GraphNodeType>
class graph_iterator {
friend class graph;
friend class graph_node;
public:
typedef size_t size_type;
typedef GraphNodeType value_type;
typedef GraphNodeType* pointer;
typedef GraphNodeType& reference;
typedef const GraphNodeType& const_reference;
typedef std::forward_iterator_tag iterator_category;
//! Default constructor
graph_iterator() : my_graph(NULL), current_node(NULL) {}
//! Copy constructor
graph_iterator(const graph_iterator& other) :
my_graph(other.my_graph), current_node(other.current_node)
{}
//! Assignment
graph_iterator& operator=(const graph_iterator& other) {
if (this != &other) {
my_graph = other.my_graph;
current_node = other.current_node;
}
return *this;
}
//! Dereference
reference operator*() const;
//! Dereference
pointer operator->() const;
//! Equality
bool operator==(const graph_iterator& other) const {
return ((my_graph == other.my_graph) && (current_node == other.current_node));
}
//! Inequality
bool operator!=(const graph_iterator& other) const { return !(operator==(other)); }
//! Pre-increment
graph_iterator& operator++() {
internal_forward();
return *this;
}
//! Post-increment
graph_iterator operator++(int) {
graph_iterator result = *this;
operator++();
return result;
}
private:
// the graph over which we are iterating
GraphContainerType *my_graph;
// pointer into my_graph's my_nodes list
pointer current_node;
//! Private initializing constructor for begin() and end() iterators
graph_iterator(GraphContainerType *g, bool begin);
void internal_forward();
};
//! The graph class
/** This class serves as a handle to the graph */
class graph : tbb::internal::no_copy {
friend class graph_node;
template< typename Body >
class run_task : public task {
public:
run_task( Body& body ) : my_body(body) {}
task *execute() {
my_body();
return NULL;
}
private:
Body my_body;
};
template< typename Receiver, typename Body >
class run_and_put_task : public task {
public:
run_and_put_task( Receiver &r, Body& body ) : my_receiver(r), my_body(body) {}
task *execute() {
task *res = my_receiver.try_put_task( my_body() );
if(res == SUCCESSFULLY_ENQUEUED) res = NULL;
return res;
}
private:
Receiver &my_receiver;
Body my_body;
};
public:
//! Constructs a graph with isolated task_group_context
explicit graph() : my_nodes(NULL), my_nodes_last(NULL)
{
own_context = true;
cancelled = false;
caught_exception = false;
my_context = new task_group_context();
my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task );
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph( this );
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_is_active = true;
#endif
}
//! Constructs a graph with use_this_context as context
explicit graph(task_group_context& use_this_context) :
my_context(&use_this_context), my_nodes(NULL), my_nodes_last(NULL)
{
own_context = false;
my_root_task = ( new ( task::allocate_root(*my_context) ) empty_task );
my_root_task->set_ref_count(1);
tbb::internal::fgt_graph( this );
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_is_active = true;
#endif
}
//! Destroys the graph.
/** Calls wait_for_all, then destroys the root task and context. */
~graph() {
wait_for_all();
my_root_task->set_ref_count(0);
task::destroy( *my_root_task );
if (own_context) delete my_context;
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_graph_desc( this, name );
}
#endif
//! Used to register that an external entity may still interact with the graph.
/** The graph will not return from wait_for_all until a matching number of decrement_wait_count calls
is made. */
void increment_wait_count() {
if (my_root_task)
my_root_task->increment_ref_count();
}
//! Deregisters an external entity that may have interacted with the graph.
/** The graph will not return from wait_for_all until all the number of decrement_wait_count calls
matches the number of increment_wait_count calls. */
void decrement_wait_count() {
if (my_root_task)
my_root_task->decrement_ref_count();
}
//! Spawns a task that runs a body and puts its output to a specific receiver
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Receiver, typename Body >
void run( Receiver &r, Body body ) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *my_root_task ) )
run_and_put_task< Receiver, Body >( r, body )) );
}
//! Spawns a task that runs a function object
/** The task is spawned as a child of the graph. This is useful for running tasks
that need to block a wait_for_all() on the graph. For example a one-off source. */
template< typename Body >
void run( Body body ) {
FLOW_SPAWN( * new ( task::allocate_additional_child_of( *my_root_task ) ) run_task< Body >( body ) );
}
//! Wait until graph is idle and decrement_wait_count calls equals increment_wait_count calls.
/** The waiting thread will go off and steal work while it is block in the wait_for_all. */
void wait_for_all() {
cancelled = false;
caught_exception = false;
if (my_root_task) {
#if TBB_USE_EXCEPTIONS
try {
#endif
my_root_task->wait_for_all();
cancelled = my_context->is_group_execution_cancelled();
#if TBB_USE_EXCEPTIONS
}
catch(...) {
my_root_task->set_ref_count(1);
my_context->reset();
caught_exception = true;
cancelled = true;
throw;
}
#endif
my_context->reset(); // consistent with behavior in catch()
my_root_task->set_ref_count(1);
}
}
//! Returns the root task of the graph
task * root_task() {
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
if (!my_is_active)
return NULL;
else
#endif
return my_root_task;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
void set_active(bool a = true) {
my_is_active = a;
}
bool is_active() {
return my_is_active;
}
#endif
// ITERATORS
template<typename C, typename N>
friend class graph_iterator;
// Graph iterator typedefs
typedef graph_iterator<graph,graph_node> iterator;
typedef graph_iterator<const graph,const graph_node> const_iterator;
// Graph iterator constructors
//! start iterator
iterator begin() { return iterator(this, true); }
//! end iterator
iterator end() { return iterator(this, false); }
//! start const iterator
const_iterator begin() const { return const_iterator(this, true); }
//! end const iterator
const_iterator end() const { return const_iterator(this, false); }
//! start const iterator
const_iterator cbegin() const { return const_iterator(this, true); }
//! end const iterator
const_iterator cend() const { return const_iterator(this, false); }
//! return status of graph execution
bool is_cancelled() { return cancelled; }
bool exception_thrown() { return caught_exception; }
// thread-unsafe state reset.
void reset(__TBB_PFG_RESET_ARG(reset_flags f = rf_reset_protocol));
private:
task *my_root_task;
task_group_context *my_context;
bool own_context;
bool cancelled;
bool caught_exception;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
bool my_is_active;
#endif
graph_node *my_nodes, *my_nodes_last;
spin_mutex nodelist_mutex;
void register_node(graph_node *n);
void remove_node(graph_node *n);
}; // class graph
template <typename C, typename N>
graph_iterator<C,N>::graph_iterator(C *g, bool begin) : my_graph(g), current_node(NULL)
{
if (begin) current_node = my_graph->my_nodes;
//else it is an end iterator by default
}
template <typename C, typename N>
typename graph_iterator<C,N>::reference graph_iterator<C,N>::operator*() const {
__TBB_ASSERT(current_node, "graph_iterator at end");
return *operator->();
}
template <typename C, typename N>
typename graph_iterator<C,N>::pointer graph_iterator<C,N>::operator->() const {
return current_node;
}
template <typename C, typename N>
void graph_iterator<C,N>::internal_forward() {
if (current_node) current_node = current_node->next;
}
//! The base of all graph nodes.
class graph_node : tbb::internal::no_assign {
friend class graph;
template<typename C, typename N>
friend class graph_iterator;
protected:
graph& my_graph;
graph_node *next, *prev;
public:
graph_node(graph& g) : my_graph(g) {
my_graph.register_node(this);
}
virtual ~graph_node() {
my_graph.remove_node(this);
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
virtual void set_name( const char *name ) = 0;
#endif
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
virtual void extract( reset_flags f=rf_extract ) {
bool a = my_graph.is_active();
my_graph.set_active(false);
reset((reset_flags)(f|rf_extract));
my_graph.set_active(a);
}
#endif
protected:
virtual void reset(__TBB_PFG_RESET_ARG(reset_flags f=rf_reset_protocol)) = 0;
};
inline void graph::register_node(graph_node *n) {
n->next = NULL;
{
spin_mutex::scoped_lock lock(nodelist_mutex);
n->prev = my_nodes_last;
if (my_nodes_last) my_nodes_last->next = n;
my_nodes_last = n;
if (!my_nodes) my_nodes = n;
}
}
inline void graph::remove_node(graph_node *n) {
{
spin_mutex::scoped_lock lock(nodelist_mutex);
__TBB_ASSERT(my_nodes && my_nodes_last, "graph::remove_node: Error: no registered nodes");
if (n->prev) n->prev->next = n->next;
if (n->next) n->next->prev = n->prev;
if (my_nodes_last == n) my_nodes_last = n->prev;
if (my_nodes == n) my_nodes = n->next;
}
n->prev = n->next = NULL;
}
inline void graph::reset( __TBB_PFG_RESET_ARG( reset_flags f )) {
// reset context
task *saved_my_root_task = my_root_task;
my_root_task = NULL;
if(my_context) my_context->reset();
cancelled = false;
caught_exception = false;
// reset all the nodes comprising the graph
for(iterator ii = begin(); ii != end(); ++ii) {
graph_node *my_p = &(*ii);
my_p->reset(__TBB_PFG_RESET_ARG(f));
}
my_root_task = saved_my_root_task;
}
#include "internal/_flow_graph_node_impl.h"
//! An executable node that acts as a source, i.e. it has no predecessors
template < typename Output >
class source_node : public graph_node, public sender< Output > {
protected:
using graph_node::my_graph;
public:
//! The type of the output message, which is complete
typedef Output output_type;
//! The type of successors of this node
typedef receiver< Output > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<successor_type *> successor_vector_type;
#endif
//! Constructor for a node with a successor
template< typename Body >
source_node( graph &g, Body body, bool is_active = true )
: graph_node(g), my_active(is_active), init_my_active(is_active),
my_body( new internal::source_body_leaf< output_type, Body>(body) ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
source_node( const source_node& src ) :
graph_node(src.my_graph), sender<Output>(),
my_active(src.init_my_active),
init_my_active(src.init_my_active), my_body( src.my_body->clone() ),
my_reserved(false), my_has_cached_item(false)
{
my_successors.set_owner(this);
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_SOURCE_NODE, &this->my_graph,
static_cast<sender<output_type> *>(this), this->my_body );
}
//! The destructor
~source_node() { delete my_body; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Add a new successor to this node
/* override */ bool register_successor( successor_type &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.register_successor(r);
if ( my_active )
spawn_put();
return true;
}
//! Removes a successor from this node
/* override */ bool remove_successor( successor_type &r ) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.remove_successor(r);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void internal_add_built_successor( successor_type &r) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_add_built_successor(r);
}
/*override*/void internal_delete_built_successor( successor_type &r) {
spin_mutex::scoped_lock lock(my_mutex);
my_successors.internal_delete_built_successor(r);
}
/*override*/size_t successor_count() {
spin_mutex::scoped_lock lock(my_mutex);
return my_successors.successor_count();
}
/*override*/void copy_successors(successor_vector_type &v) {
spin_mutex::scoped_lock l(my_mutex);
my_successors.copy_successors(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Request an item from the node
/*override */ bool try_get( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved )
return false;
if ( my_has_cached_item ) {
v = my_cached_item;
my_has_cached_item = false;
return true;
}
// we've been asked to provide an item, but we have none. enqueue a task to
// provide one.
spawn_put();
return false;
}
//! Reserves an item.
/* override */ bool try_reserve( output_type &v ) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Release a reserved item.
/** true = item has been released and so remains in sender, dest must request or reserve future items */
/* override */ bool try_release( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "releasing non-existent reservation" );
my_reserved = false;
if(!my_successors.empty())
spawn_put();
return true;
}
//! Consumes a reserved item
/* override */ bool try_consume( ) {
spin_mutex::scoped_lock lock(my_mutex);
__TBB_ASSERT( my_reserved && my_has_cached_item, "consuming non-existent reservation" );
my_reserved = false;
my_has_cached_item = false;
if ( !my_successors.empty() ) {
spawn_put();
}
return true;
}
//! Activates a node that was created in the inactive state
void activate() {
spin_mutex::scoped_lock lock(my_mutex);
my_active = true;
if ( !my_successors.empty() )
spawn_put();
}
template<typename Body>
Body copy_function_object() {
internal::source_body<output_type> &body_ref = *this->my_body;
return dynamic_cast< internal::source_body_leaf<output_type, Body> & >(body_ref).get_body();
}
protected:
//! resets the source_node to its initial state
void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
my_active = init_my_active;
my_reserved =false;
if(my_has_cached_item) {
my_has_cached_item = false;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_successors.reset(f);
if(f & rf_reset_bodies) my_body->reset_body();
#endif
}
private:
spin_mutex my_mutex;
bool my_active;
bool init_my_active;
internal::source_body<output_type> *my_body;
internal::broadcast_cache< output_type > my_successors;
bool my_reserved;
bool my_has_cached_item;
output_type my_cached_item;
// used by apply_body, can invoke body of node.
bool try_reserve_apply_body(output_type &v) {
spin_mutex::scoped_lock lock(my_mutex);
if ( my_reserved ) {
return false;
}
if ( !my_has_cached_item ) {
tbb::internal::fgt_begin_body( my_body );
bool r = (*my_body)(my_cached_item);
tbb::internal::fgt_end_body( my_body );
if (r) {
my_has_cached_item = true;
}
}
if ( my_has_cached_item ) {
v = my_cached_item;
my_reserved = true;
return true;
} else {
return false;
}
}
//! Spawns a task that applies the body
/* override */ void spawn_put( ) {
task* tp = this->my_graph.root_task();
if(tp) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *tp ) )
internal:: source_task_bypass < source_node< output_type > >( *this ) ) );
}
}
friend class internal::source_task_bypass< source_node< output_type > >;
//! Applies the body. Returning SUCCESSFULLY_ENQUEUED okay; forward_task_bypass will handle it.
/* override */ task * apply_body_bypass( ) {
output_type v;
if ( !try_reserve_apply_body(v) )
return NULL;
task *last_task = my_successors.try_put_task(v);
if ( last_task )
try_consume();
else
try_release();
return last_task;
}
}; // source_node
//! Implements a function node that supports Input -> Output
template < typename Input, typename Output = continue_msg, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class function_node : public graph_node, public internal::function_input<Input,Output,Allocator>, public internal::function_output<Output> {
protected:
using graph_node::my_graph;
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_input<input_type,output_type,Allocator> fInput_type;
typedef internal::function_output<output_type> fOutput_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEAURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
typedef std::vector<successor_type *> successor_vector_type;
#endif
//! Constructor
template< typename Body >
function_node( graph &g, size_t concurrency, Body body ) :
graph_node(g), internal::function_input<input_type,output_type,Allocator>(g, concurrency, body) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
function_node( const function_node& src ) :
graph_node(src.my_graph), internal::function_input<input_type,output_type,Allocator>( src ),
fOutput_type() {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->my_graph, static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using fInput_type::try_put_task;
// override of graph_node's reset.
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) {
fInput_type::reset_function_input(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
successors().reset(f);
__TBB_ASSERT(!(f & rf_extract) || successors().empty(), "function_node successors not empty");
__TBB_ASSERT(this->my_predecessors.empty(), "function_node predecessors not empty");
#endif
}
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
};
//! Implements a function node that supports Input -> Output
template < typename Input, typename Output, typename Allocator >
class function_node<Input,Output,queueing,Allocator> : public graph_node, public internal::function_input<Input,Output,Allocator>, public internal::function_output<Output> {
protected:
using graph_node::my_graph;
public:
typedef Input input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::function_input<input_type,output_type,Allocator> fInput_type;
typedef internal::function_input_queue<input_type, Allocator> queue_type;
typedef internal::function_output<output_type> fOutput_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
typedef std::vector<successor_type *> successor_vector_type;
#endif
//! Constructor
template< typename Body >
function_node( graph &g, size_t concurrency, Body body ) :
graph_node(g), fInput_type( g, concurrency, body, new queue_type() ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
function_node( const function_node& src ) :
graph_node(src.graph_node::my_graph), fInput_type( src, new queue_type() ), fOutput_type() {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_FUNCTION_NODE, &this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using fInput_type::try_put_task;
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
fInput_type::reset_function_input(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
successors().reset(f);
__TBB_ASSERT(!(f & rf_extract) || successors().empty(), "function_node successors not empty");
__TBB_ASSERT(!(f & rf_extract) || this->my_predecessors.empty(), "function_node predecessors not empty");
#endif
}
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
};
//! implements a function node that supports Input -> (set of outputs)
// Output is a tuple of output types.
template < typename Input, typename Output, graph_buffer_policy = queueing, typename Allocator=cache_aligned_allocator<Input> >
class multifunction_node :
public graph_node,
public internal::multifunction_input
<
Input,
typename internal::wrap_tuple_elements<
tbb::flow::tuple_size<Output>::value, // #elements in tuple
internal::multifunction_output, // wrap this around each element
Output // the tuple providing the types
>::type,
Allocator
> {
protected:
using graph_node::my_graph;
private:
static const int N = tbb::flow::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef typename internal::wrap_tuple_elements<N,internal::multifunction_output, Output>::type output_ports_type;
private:
typedef typename internal::multifunction_input<input_type, output_ports_type, Allocator> base_type;
typedef typename internal::function_input_queue<input_type,Allocator> queue_type;
public:
template<typename Body>
multifunction_node( graph &g, size_t concurrency, Body body ) :
graph_node(g), base_type(g,concurrency, body) {
tbb::internal::fgt_multioutput_node_with_body<Output,N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
multifunction_node( const multifunction_node &other) :
graph_node(other.graph_node::my_graph), base_type(other) {
tbb::internal::fgt_multioutput_node_with_body<Output,N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
// all the guts are in multifunction_input...
protected:
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) { base_type::reset(__TBB_PFG_RESET_ARG(f)); }
}; // multifunction_node
template < typename Input, typename Output, typename Allocator >
class multifunction_node<Input,Output,queueing,Allocator> : public graph_node, public internal::multifunction_input<Input,
typename internal::wrap_tuple_elements<tbb::flow::tuple_size<Output>::value, internal::multifunction_output, Output>::type, Allocator> {
protected:
using graph_node::my_graph;
static const int N = tbb::flow::tuple_size<Output>::value;
public:
typedef Input input_type;
typedef typename internal::wrap_tuple_elements<N, internal::multifunction_output, Output>::type output_ports_type;
private:
typedef typename internal::multifunction_input<input_type, output_ports_type, Allocator> base_type;
typedef typename internal::function_input_queue<input_type,Allocator> queue_type;
public:
template<typename Body>
multifunction_node( graph &g, size_t concurrency, Body body) :
graph_node(g), base_type(g,concurrency, body, new queue_type()) {
tbb::internal::fgt_multioutput_node_with_body<Output,N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
multifunction_node( const multifunction_node &other) :
graph_node(other.graph_node::my_graph), base_type(other, new queue_type()) {
tbb::internal::fgt_multioutput_node_with_body<Output,N>( tbb::internal::FLOW_MULTIFUNCTION_NODE,
&this->graph_node::my_graph, static_cast<receiver<input_type> *>(this),
this->output_ports(), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
// all the guts are in multifunction_input...
protected:
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) { base_type::reset(__TBB_PFG_RESET_ARG(f)); }
}; // multifunction_node
//! split_node: accepts a tuple as input, forwards each element of the tuple to its
// successors. The node has unlimited concurrency, so though it is marked as
// "rejecting" it does not reject inputs.
template<typename TupleType, typename Allocator=cache_aligned_allocator<TupleType> >
class split_node : public multifunction_node<TupleType, TupleType, rejecting, Allocator> {
static const int N = tbb::flow::tuple_size<TupleType>::value;
typedef multifunction_node<TupleType,TupleType,rejecting,Allocator> base_type;
public:
typedef typename base_type::output_ports_type output_ports_type;
private:
struct splitting_body {
void operator()(const TupleType& t, output_ports_type &p) {
internal::emit_element<N>::emit_this(t, p);
}
};
public:
typedef TupleType input_type;
typedef Allocator allocator_type;
split_node(graph &g) : base_type(g, unlimited, splitting_body()) {
tbb::internal::fgt_multioutput_node<TupleType,N>( tbb::internal::FLOW_SPLIT_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports() );
}
split_node( const split_node & other) : base_type(other) {
tbb::internal::fgt_multioutput_node<TupleType,N>( tbb::internal::FLOW_SPLIT_NODE, &this->graph_node::my_graph,
static_cast<receiver<input_type> *>(this), this->output_ports() );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_multioutput_node_desc( this, name );
}
#endif
};
//! Implements an executable node that supports continue_msg -> Output
template <typename Output>
class continue_node : public graph_node, public internal::continue_input<Output>, public internal::function_output<Output> {
protected:
using graph_node::my_graph;
public:
typedef continue_msg input_type;
typedef Output output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef internal::continue_input<Output> fInput_type;
typedef internal::function_output<output_type> fOutput_type;
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, Body body ) :
graph_node(g), internal::continue_input<output_type>( g, body ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Constructor for executable node with continue_msg -> Output
template <typename Body >
continue_node( graph &g, int number_of_predecessors, Body body ) :
graph_node(g), internal::continue_input<output_type>( g, number_of_predecessors, body ) {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
//! Copy constructor
continue_node( const continue_node& src ) :
graph_node(src.graph_node::my_graph), internal::continue_input<output_type>(src),
internal::function_output<Output>() {
tbb::internal::fgt_node_with_body( tbb::internal::FLOW_CONTINUE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this), this->my_body );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
using fInput_type::try_put_task;
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) {
fInput_type::reset_receiver(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
successors().reset(f);
__TBB_ASSERT(!(f & rf_extract) || successors().empty(), "continue_node not reset");
#endif
}
/* override */ internal::broadcast_cache<output_type> &successors () { return fOutput_type::my_successors; }
}; // continue_node
template< typename T >
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
typedef std::vector<successor_type *> successor_vector_type;
#endif
overwrite_node(graph &g) : graph_node(g), my_buffer_is_valid(false) {
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
// Copy constructor; doesn't take anything from src; default won't work
overwrite_node( const overwrite_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(), my_buffer_is_valid(false)
{
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_OVERWRITE_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
~overwrite_node() {}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
/* override */ bool register_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
task* tp = this->my_graph.root_task(); // just to test if we are resetting
if (my_buffer_is_valid && tp) {
// We have a valid value that must be forwarded immediately.
if ( s.try_put( my_buffer ) || !s.register_predecessor( *this ) ) {
// We add the successor: it accepted our put or it rejected it but won't let us become a predecessor
my_successors.register_successor( s );
} else {
// We don't add the successor: it rejected our put and we became its predecessor instead
return false;
}
} else {
// No valid value yet, just add as successor
my_successors.register_successor( s );
}
return true;
}
/* override */ bool remove_successor( successor_type &s ) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.remove_successor(s);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void internal_add_built_successor( successor_type &s) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_add_built_successor(s);
}
/*override*/void internal_delete_built_successor( successor_type &s) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.internal_delete_built_successor(s);
}
/*override*/size_t successor_count() {
spin_mutex::scoped_lock l( my_mutex );
return my_successors.successor_count();
}
/*override*/ void copy_successors(successor_vector_type &v) {
spin_mutex::scoped_lock l( my_mutex );
my_successors.copy_successors(v);
}
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.add_edge(p);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.delete_edge(p);
}
/*override*/size_t predecessor_count() {
spin_mutex::scoped_lock l( my_mutex );
return my_built_predecessors.edge_count();
}
/*override*/void copy_predecessors(predecessor_vector_type &v) {
spin_mutex::scoped_lock l( my_mutex );
my_built_predecessors.copy_edges(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
/* override */ bool try_get( input_type &v ) {
spin_mutex::scoped_lock l( my_mutex );
if ( my_buffer_is_valid ) {
v = my_buffer;
return true;
}
return false;
}
bool is_valid() {
spin_mutex::scoped_lock l( my_mutex );
return my_buffer_is_valid;
}
void clear() {
spin_mutex::scoped_lock l( my_mutex );
my_buffer_is_valid = false;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
/* override */ task * try_put_task( const input_type &v ) {
spin_mutex::scoped_lock l( my_mutex );
my_buffer = v;
my_buffer_is_valid = true;
task * rtask = my_successors.try_put_task(v);
if(!rtask) rtask = SUCCESSFULLY_ENQUEUED;
return rtask;
}
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
my_buffer_is_valid = false;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_successors.reset(f);
if (f&rf_extract) {
my_built_predecessors.receiver_extract(*this);
}
#endif
}
spin_mutex my_mutex;
internal::broadcast_cache< input_type, null_rw_mutex > my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<sender<input_type> > my_built_predecessors;
#endif
input_type my_buffer;
bool my_buffer_is_valid;
/*override*/void reset_receiver(__TBB_PFG_RESET_ARG(reset_flags /*f*/)) {}
}; // overwrite_node
template< typename T >
class write_once_node : public overwrite_node<T> {
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
write_once_node(graph& g) : overwrite_node<T>(g) {
tbb::internal::fgt_node( tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor: call base class copy constructor
write_once_node( const write_once_node& src ) : overwrite_node<T>(src) {
tbb::internal::fgt_node( tbb::internal::FLOW_WRITE_ONCE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
/* override */ task *try_put_task( const T &v ) {
spin_mutex::scoped_lock l( this->my_mutex );
if ( this->my_buffer_is_valid ) {
return NULL;
} else {
this->my_buffer = v;
this->my_buffer_is_valid = true;
task *res = this->my_successors.try_put_task(v);
if(!res) res = SUCCESSFULLY_ENQUEUED;
return res;
}
}
};
//! Forwards messages of type T to all successors
template <typename T>
class broadcast_node : public graph_node, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
typedef std::vector<successor_type *> successor_vector_type;
#endif
private:
internal::broadcast_cache<input_type> my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<predecessor_type> my_built_predecessors;
spin_mutex pred_mutex;
#endif
public:
broadcast_node(graph& g) : graph_node(g) {
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
// Copy constructor
broadcast_node( const broadcast_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>()
{
my_successors.set_owner( this );
tbb::internal::fgt_node( tbb::internal::FLOW_BROADCAST_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Adds a successor
virtual bool register_successor( receiver<T> &r ) {
my_successors.register_successor( r );
return true;
}
//! Removes s as a successor
virtual bool remove_successor( receiver<T> &r ) {
my_successors.remove_successor( r );
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ void internal_add_built_successor(successor_type &r) {
my_successors.internal_add_built_successor(r);
}
/*override*/ void internal_delete_built_successor(successor_type &r) {
my_successors.internal_delete_built_successor(r);
}
/*override*/ size_t successor_count() {
return my_successors.successor_count();
}
/*override*/ void copy_successors(successor_vector_type &v) {
my_successors.copy_successors(v);
}
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
my_built_predecessors.add_edge(p);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
my_built_predecessors.delete_edge(p);
}
/*override*/ size_t predecessor_count() {
return my_built_predecessors.edge_count();
}
/*override*/ void copy_predecessors(predecessor_vector_type &v) {
my_built_predecessors.copy_edges(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! build a task to run the successor if possible. Default is old behavior.
/*override*/ task *try_put_task(const T& t) {
task *new_task = my_successors.try_put_task(t);
if(!new_task) new_task = SUCCESSFULLY_ENQUEUED;
return new_task;
}
/*override*/void reset(__TBB_PFG_RESET_ARG(reset_flags f)) {
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_successors.reset(f);
if (f&rf_extract) {
my_built_predecessors.receiver_extract(*this);
}
__TBB_ASSERT(!(f & rf_extract) || my_successors.empty(), "Error resetting broadcast_node");
#endif
}
/*override*/void reset_receiver(__TBB_PFG_RESET_ARG(reset_flags /*f*/)) {}
}; // broadcast_node
//! Forwards messages in arbitrary order
template <typename T, typename A=cache_aligned_allocator<T> >
class buffer_node : public graph_node, public internal::reservable_item_buffer<T, A>, public receiver<T>, public sender<T> {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
typedef buffer_node<T, A> my_class;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<predecessor_type *> predecessor_vector_type;
typedef std::vector<successor_type *> successor_vector_type;
#endif
protected:
typedef size_t size_type;
internal::round_robin_cache< T, null_rw_mutex > my_successors;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
edge_container<predecessor_type> my_built_predecessors;
#endif
friend class internal::forward_task_bypass< buffer_node< T, A > >;
enum op_type {reg_succ, rem_succ, req_item, res_item, rel_res, con_res, put_item, try_fwd_task
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
, add_blt_succ, del_blt_succ,
add_blt_pred, del_blt_pred,
blt_succ_cnt, blt_pred_cnt,
blt_succ_cpy, blt_pred_cpy // create vector copies of preds and succs
#endif
};
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
// implements the aggregator_operation concept
class buffer_operation : public internal::aggregated_operation< buffer_operation > {
public:
char type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
task * ltask;
union {
input_type *elem;
successor_type *r;
predecessor_type *p;
size_t cnt_val;
successor_vector_type *svec;
predecessor_vector_type *pvec;
};
#else
T *elem;
task * ltask;
successor_type *r;
#endif
buffer_operation(const T& e, op_type t) : type(char(t))
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
, ltask(NULL), elem(const_cast<T*>(&e))
#else
, elem(const_cast<T*>(&e)) , ltask(NULL)
#endif
{}
buffer_operation(op_type t) : type(char(t)), ltask(NULL) {}
};
bool forwarder_busy;
typedef internal::aggregating_functor<my_class, buffer_operation> my_handler;
friend class internal::aggregating_functor<my_class, buffer_operation>;
internal::aggregator< my_handler, buffer_operation> my_aggregator;
virtual void handle_operations(buffer_operation *op_list) {
buffer_operation *tmp = NULL;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case reg_succ: internal_reg_succ(tmp); try_forwarding = true; break;
case rem_succ: internal_rem_succ(tmp); break;
case req_item: internal_pop(tmp); break;
case res_item: internal_reserve(tmp); break;
case rel_res: internal_release(tmp); try_forwarding = true; break;
case con_res: internal_consume(tmp); try_forwarding = true; break;
case put_item: internal_push(tmp); try_forwarding = (tmp->status == SUCCEEDED); break;
case try_fwd_task: internal_forward_task(tmp); break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// edge recording
case add_blt_succ: internal_add_built_succ(tmp); break;
case del_blt_succ: internal_del_built_succ(tmp); break;
case add_blt_pred: internal_add_built_pred(tmp); break;
case del_blt_pred: internal_del_built_pred(tmp); break;
case blt_succ_cnt: internal_succ_cnt(tmp); break;
case blt_pred_cnt: internal_pred_cnt(tmp); break;
case blt_succ_cpy: internal_copy_succs(tmp); break;
case blt_pred_cpy: internal_copy_preds(tmp); break;
#endif
}
}
if (try_forwarding && !forwarder_busy) {
task* tp = this->my_graph.root_task();
if(tp) {
forwarder_busy = true;
task *new_task = new(task::allocate_additional_child_of(*tp)) internal::
forward_task_bypass
< buffer_node<input_type, A> >(*this);
// tmp should point to the last item handled by the aggregator. This is the operation
// the handling thread enqueued. So modifying that record will be okay.
tbb::task *z = tmp->ltask;
tmp->ltask = combine_tasks(z, new_task); // in case the op generated a task
}
}
}
inline task *grab_forwarding_task( buffer_operation &op_data) {
return op_data.ltask;
}
inline bool enqueue_forwarding_task(buffer_operation &op_data) {
task *ft = grab_forwarding_task(op_data);
if(ft) {
FLOW_SPAWN(*ft);
return true;
}
return false;
}
//! This is executed by an enqueued task, the "forwarder"
virtual task *forward_task() {
buffer_operation op_data(try_fwd_task);
task *last_task = NULL;
do {
op_data.status = WAIT;
op_data.ltask = NULL;
my_aggregator.execute(&op_data);
tbb::task *xtask = op_data.ltask;
last_task = combine_tasks(last_task, xtask);
} while (op_data.status == SUCCEEDED);
return last_task;
}
//! Register successor
virtual void internal_reg_succ(buffer_operation *op) {
my_successors.register_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
//! Remove successor
virtual void internal_rem_succ(buffer_operation *op) {
my_successors.remove_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
virtual void internal_add_built_succ(buffer_operation *op) {
my_successors.internal_add_built_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_del_built_succ(buffer_operation *op) {
my_successors.internal_delete_built_successor(*(op->r));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_add_built_pred(buffer_operation *op) {
my_built_predecessors.add_edge(*(op->p));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_del_built_pred(buffer_operation *op) {
my_built_predecessors.delete_edge(*(op->p));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_succ_cnt(buffer_operation *op) {
op->cnt_val = my_successors.successor_count();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_pred_cnt(buffer_operation *op) {
op->cnt_val = my_built_predecessors.edge_count();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_copy_succs(buffer_operation *op) {
my_successors.copy_successors(*(op->svec));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_copy_preds(buffer_operation *op) {
my_built_predecessors.copy_edges(*(op->pvec));
__TBB_store_with_release(op->status, SUCCEEDED);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Tries to forward valid items to successors
virtual void internal_forward_task(buffer_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_tail-1)) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
T i_copy;
task * last_task = NULL;
size_type counter = my_successors.size();
// Try forwarding, giving each successor a chance
while (counter>0 && !this->buffer_empty() && this->my_item_valid(this->my_tail-1)) {
this->copy_back(i_copy);
task *new_task = my_successors.try_put_task(i_copy);
if(new_task) {
last_task = combine_tasks(last_task, new_task);
this->destroy_back();
}
--counter;
}
op->ltask = last_task; // return task
if (last_task && !counter) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
forwarder_busy = false;
}
}
virtual void internal_push(buffer_operation *op) {
this->push_back(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_pop(buffer_operation *op) {
if(this->pop_back(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_reserve(buffer_operation *op) {
if(this->reserve_front(*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
__TBB_store_with_release(op->status, FAILED);
}
}
virtual void internal_consume(buffer_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
virtual void internal_release(buffer_operation *op) {
this->release_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
//! Constructor
buffer_node( graph &g ) : graph_node(g), internal::reservable_item_buffer<T>(),
forwarder_busy(false) {
my_successors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
tbb::internal::fgt_node( tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
buffer_node( const buffer_node& src ) : graph_node(src.my_graph),
internal::reservable_item_buffer<T>(), receiver<T>(), sender<T>() {
forwarder_busy = false;
my_successors.set_owner(this);
my_aggregator.initialize_handler(my_handler(this));
tbb::internal::fgt_node( tbb::internal::FLOW_BUFFER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<sender<output_type> *>(this) );
}
virtual ~buffer_node() {}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//
// message sender implementation
//
//! Adds a new successor.
/** Adds successor r to the list of successors; may forward tasks. */
/* override */ bool register_successor( successor_type &r ) {
buffer_operation op_data(reg_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/ void internal_add_built_successor( successor_type &r) {
buffer_operation op_data(add_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_delete_built_successor( successor_type &r) {
buffer_operation op_data(del_blt_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_add_built_predecessor( predecessor_type &p) {
buffer_operation op_data(add_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
/*override*/ void internal_delete_built_predecessor( predecessor_type &p) {
buffer_operation op_data(del_blt_pred);
op_data.p = &p;
my_aggregator.execute(&op_data);
}
/*override*/ size_t predecessor_count() {
buffer_operation op_data(blt_pred_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
/*override*/ size_t successor_count() {
buffer_operation op_data(blt_succ_cnt);
my_aggregator.execute(&op_data);
return op_data.cnt_val;
}
/*override*/ void copy_predecessors( predecessor_vector_type &v ) {
buffer_operation op_data(blt_pred_cpy);
op_data.pvec = &v;
my_aggregator.execute(&op_data);
}
/*override*/ void copy_successors( successor_vector_type &v ) {
buffer_operation op_data(blt_succ_cpy);
op_data.svec = &v;
my_aggregator.execute(&op_data);
}
#endif
//! Removes a successor.
/** Removes successor r from the list of successors.
It also calls r.remove_predecessor(*this) to remove this node as a predecessor. */
/* override */ bool remove_successor( successor_type &r ) {
r.remove_predecessor(*this);
buffer_operation op_data(rem_succ);
op_data.r = &r;
my_aggregator.execute(&op_data);
// even though this operation does not cause a forward, if we are the handler, and
// a forward is scheduled, we may be the first to reach this point after the aggregator,
// and so should check for the task.
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Request an item from the buffer_node
/** true = v contains the returned item<BR>
false = no item has been returned */
/* override */ bool try_get( T &v ) {
buffer_operation op_data(req_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==SUCCEEDED);
}
//! Reserves an item.
/** false = no item can be reserved<BR>
true = an item is reserved */
/* override */ bool try_reserve( T &v ) {
buffer_operation op_data(res_item);
op_data.elem = &v;
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return (op_data.status==SUCCEEDED);
}
//! Release a reserved item.
/** true = item has been released and so remains in sender */
/* override */ bool try_release() {
buffer_operation op_data(rel_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
//! Consumes a reserved item.
/** true = item is removed from sender and reservation removed */
/* override */ bool try_consume() {
buffer_operation op_data(con_res);
my_aggregator.execute(&op_data);
(void)enqueue_forwarding_task(op_data);
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! receive an item, return a task *if possible
/* override */ task *try_put_task(const T &t) {
buffer_operation op_data(t, put_item);
my_aggregator.execute(&op_data);
task *ft = grab_forwarding_task(op_data);
// sequencer_nodes can return failure (if an item has been previously inserted)
// We have to spawn the returned task if our own operation fails.
if(ft && op_data.status == FAILED) {
// we haven't succeeded queueing the item, but for some reason the
// call returned a task (if another request resulted in a successful
// forward this could happen.) Queue the task and reset the pointer.
FLOW_SPAWN(*ft); ft = NULL;
}
else if(!ft && op_data.status == SUCCEEDED) {
ft = SUCCESSFULLY_ENQUEUED;
}
return ft;
}
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
internal::reservable_item_buffer<T, A>::reset();
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_successors.reset(f);
if (f&rf_extract) {
my_built_predecessors.receiver_extract(*this);
}
#endif
forwarder_busy = false;
}
/*override*/void reset_receiver(__TBB_PFG_RESET_ARG(reset_flags /*f*/)) { }
}; // buffer_node
//! Forwards messages in FIFO order
template <typename T, typename A=cache_aligned_allocator<T> >
class queue_node : public buffer_node<T, A> {
protected:
typedef buffer_node<T, A> base_type;
typedef typename base_type::size_type size_type;
typedef typename base_type::buffer_operation queue_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
/* override */ void internal_forward_task(queue_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_head)) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
T i_copy;
task *last_task = NULL;
size_type counter = this->my_successors.size();
// Keep trying to send items while there is at least one accepting successor
while (counter>0 && this->my_item_valid(this->my_head)) {
this->copy_front(i_copy);
task *new_task = this->my_successors.try_put_task(i_copy);
if(new_task) {
this->destroy_front();
last_task = combine_tasks(last_task, new_task);
}
--counter;
}
op->ltask = last_task;
if (last_task && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_pop(queue_operation *op) {
if ( this->my_reserved || !this->my_item_valid(this->my_head)){
__TBB_store_with_release(op->status, FAILED);
}
else {
this->pop_front(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_reserve(queue_operation *op) {
if (this->my_reserved || !this->my_item_valid(this->my_head)) {
__TBB_store_with_release(op->status, FAILED);
}
else {
this->reserve_front(*(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
}
}
/* override */ void internal_consume(queue_operation *op) {
this->consume_front();
__TBB_store_with_release(op->status, SUCCEEDED);
}
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
queue_node( graph &g ) : base_type(g) {
tbb::internal::fgt_node( tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
queue_node( const queue_node& src) : base_type(src) {
tbb::internal::fgt_node( tbb::internal::FLOW_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
base_type::reset(__TBB_PFG_RESET_ARG(f));
}
}; // queue_node
//! Forwards messages in sequence order
template< typename T, typename A=cache_aligned_allocator<T> >
class sequencer_node : public queue_node<T, A> {
internal::function_body< T, size_t > *my_sequencer;
// my_sequencer should be a benign function and must be callable
// from a parallel context. Does this mean it needn't be reset?
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
template< typename Sequencer >
sequencer_node( graph &g, const Sequencer& s ) : queue_node<T, A>(g),
my_sequencer(new internal::function_body_leaf< T, size_t, Sequencer>(s) ) {
tbb::internal::fgt_node( tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
sequencer_node( const sequencer_node& src ) : queue_node<T, A>(src),
my_sequencer( src.my_sequencer->clone() ) {
tbb::internal::fgt_node( tbb::internal::FLOW_SEQUENCER_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Destructor
~sequencer_node() { delete my_sequencer; }
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::buffer_operation sequencer_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
private:
/* override */ void internal_push(sequencer_operation *op) {
size_type tag = (*my_sequencer)(*(op->elem));
#if !TBB_DEPRECATED_SEQUENCER_DUPLICATES
if(tag < this->my_head) {
// have already emitted a message with this tag
__TBB_store_with_release(op->status, FAILED);
return;
}
#endif
// cannot modify this->my_tail now; the buffer would be inconsistent.
size_t new_tail = (tag+1 > this->my_tail) ? tag+1 : this->my_tail;
if(this->size(new_tail) > this->capacity()) {
this->grow_my_array(this->size(new_tail));
}
this->my_tail = new_tail;
if(this->place_item(tag,*(op->elem))) {
__TBB_store_with_release(op->status, SUCCEEDED);
}
else {
// already have a message with this tag
__TBB_store_with_release(op->status, FAILED);
}
}
}; // sequencer_node
//! Forwards messages in priority order
template< typename T, typename Compare = std::less<T>, typename A=cache_aligned_allocator<T> >
class priority_queue_node : public buffer_node<T, A> {
public:
typedef T input_type;
typedef T output_type;
typedef buffer_node<T,A> base_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
//! Constructor
priority_queue_node( graph &g ) : buffer_node<T, A>(g), mark(0) {
tbb::internal::fgt_node( tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
priority_queue_node( const priority_queue_node &src ) : buffer_node<T, A>(src), mark(0) {
tbb::internal::fgt_node( tbb::internal::FLOW_PRIORITY_QUEUE_NODE, &(this->my_graph),
static_cast<receiver<input_type> *>(this),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
protected:
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
mark = 0;
base_type::reset(__TBB_PFG_RESET_ARG(f));
}
typedef typename buffer_node<T, A>::size_type size_type;
typedef typename buffer_node<T, A>::item_type item_type;
typedef typename buffer_node<T, A>::buffer_operation prio_operation;
enum op_stat {WAIT=0, SUCCEEDED, FAILED};
/* override */ void handle_operations(prio_operation *op_list) {
prio_operation *tmp = op_list /*, *pop_list*/ ;
bool try_forwarding=false;
while (op_list) {
tmp = op_list;
op_list = op_list->next;
switch (tmp->type) {
case buffer_node<T, A>::reg_succ: this->internal_reg_succ(tmp); try_forwarding = true; break;
case buffer_node<T, A>::rem_succ: this->internal_rem_succ(tmp); break;
case buffer_node<T, A>::put_item: internal_push(tmp); try_forwarding = true; break;
case buffer_node<T, A>::try_fwd_task: internal_forward_task(tmp); break;
case buffer_node<T, A>::rel_res: internal_release(tmp); try_forwarding = true; break;
case buffer_node<T, A>::con_res: internal_consume(tmp); try_forwarding = true; break;
case buffer_node<T, A>::req_item: internal_pop(tmp); break;
case buffer_node<T, A>::res_item: internal_reserve(tmp); break;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
case buffer_node<T, A>::add_blt_succ: this->internal_add_built_succ(tmp); break;
case buffer_node<T, A>::del_blt_succ: this->internal_del_built_succ(tmp); break;
case buffer_node<T, A>::add_blt_pred: this->internal_add_built_pred(tmp); break;
case buffer_node<T, A>::del_blt_pred: this->internal_del_built_pred(tmp); break;
case buffer_node<T, A>::blt_succ_cnt: this->internal_succ_cnt(tmp); break;
case buffer_node<T, A>::blt_pred_cnt: this->internal_pred_cnt(tmp); break;
case buffer_node<T, A>::blt_succ_cpy: this->internal_copy_succs(tmp); break;
case buffer_node<T, A>::blt_pred_cpy: this->internal_copy_preds(tmp); break;
#endif
}
}
// process pops! for now, no special pop processing
if (mark<this->my_tail) heapify();
if (try_forwarding && !this->forwarder_busy) {
task* tp = this->my_graph.root_task();
if(tp) {
this->forwarder_busy = true;
task *new_task = new(task::allocate_additional_child_of(*tp)) internal::
forward_task_bypass
< buffer_node<input_type, A> >(*this);
// tmp should point to the last item handled by the aggregator. This is the operation
// the handling thread enqueued. So modifying that record will be okay.
tbb::task *tmp1 = tmp->ltask;
tmp->ltask = combine_tasks(tmp1, new_task);
}
}
}
//! Tries to forward valid items to successors
/* override */ void internal_forward_task(prio_operation *op) {
T i_copy;
task * last_task = NULL; // flagged when a successor accepts
size_type counter = this->my_successors.size();
if (this->my_reserved || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
return;
}
// Keep trying to send while there exists an accepting successor
while (counter>0 && this->my_tail > 0) {
i_copy = this->get_my_item(0);
task * new_task = this->my_successors.try_put_task(i_copy);
if ( new_task ) {
last_task = combine_tasks(last_task, new_task);
this->destroy_item(0); // we've forwarded this item
if (mark == this->my_tail) --mark;
if(--(this->my_tail)) { // didn't consume last item on heap
this->move_item(0,this->my_tail);
}
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
}
--counter;
}
op->ltask = last_task;
if (last_task && !counter)
__TBB_store_with_release(op->status, SUCCEEDED);
else {
__TBB_store_with_release(op->status, FAILED);
this->forwarder_busy = false;
}
}
/* override */ void internal_push(prio_operation *op) {
if ( this->my_tail >= this->my_array_size )
this->grow_my_array( this->my_tail + 1 );
(void) this->place_item(this->my_tail, *(op->elem));
++(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
}
/* override */ void internal_pop(prio_operation *op) {
// if empty or already reserved, don't pop
if ( this->my_reserved == true || this->my_tail == 0 ) {
__TBB_store_with_release(op->status, FAILED);
return;
}
if (mark<this->my_tail && // item pushed, no re-heap
compare(this->get_my_item(0),
this->get_my_item(this->my_tail-1))) {
// there are newly pushed elems; last one higher than top
// copy the data
this->fetch_item(this->my_tail-1, *(op->elem));
__TBB_store_with_release(op->status, SUCCEEDED);
--(this->my_tail);
return;
}
// extract and push the last element down heap
*(op->elem) = this->get_my_item(0); // copy the data, item 0 still valid
__TBB_store_with_release(op->status, SUCCEEDED);
if (mark == this->my_tail) --mark;
__TBB_ASSERT(this->my_item_valid(this->my_tail - 1), NULL);
if(--(this->my_tail)) {
// there were two or more items in heap. Move the
// last item to the top of the heap
this->set_my_item(0,this->get_my_item(this->my_tail));
}
this->destroy_item(this->my_tail);
if (this->my_tail > 1) // don't reheap for heap of size 1
reheap();
}
/* override */ void internal_reserve(prio_operation *op) {
if (this->my_reserved == true || this->my_tail == 0) {
__TBB_store_with_release(op->status, FAILED);
return;
}
this->my_reserved = true;
*(op->elem) = reserved_item = this->get_my_item(0);
if (mark == this->my_tail) --mark;
--(this->my_tail);
__TBB_store_with_release(op->status, SUCCEEDED);
this->set_my_item(0, this->get_my_item(this->my_tail));
this->destroy_item(this->my_tail);
if (this->my_tail > 1)
reheap();
}
/* override */ void internal_consume(prio_operation *op) {
this->my_reserved = false;
__TBB_store_with_release(op->status, SUCCEEDED);
}
/* override */ void internal_release(prio_operation *op) {
if (this->my_tail >= this->my_array_size)
this->grow_my_array( this->my_tail + 1 );
this->set_my_item(this->my_tail, reserved_item);
++(this->my_tail);
this->my_reserved = false;
__TBB_store_with_release(op->status, SUCCEEDED);
heapify();
}
private:
Compare compare;
size_type mark;
input_type reserved_item;
// turn array into heap
void heapify() {
if (!mark) mark = 1;
for (; mark<this->my_tail; ++mark) { // for each unheaped element
size_type cur_pos = mark;
input_type to_place;
this->fetch_item(mark,to_place);
do { // push to_place up the heap
size_type parent = (cur_pos-1)>>1;
if (!compare(this->get_my_item(parent), to_place))
break;
this->move_item(cur_pos, parent);
cur_pos = parent;
} while( cur_pos );
(void) this->place_item(cur_pos, to_place);
}
}
// otherwise heapified array with new root element; rearrange to heap
void reheap() {
size_type cur_pos=0, child=1;
while (child < mark) {
size_type target = child;
if (child+1<mark &&
compare(this->get_my_item(child),
this->get_my_item(child+1)))
++target;
// target now has the higher priority child
if (compare(this->get_my_item(target),
this->get_my_item(cur_pos)))
break;
// swap
this->swap_items(cur_pos, target);
cur_pos = target;
child = (cur_pos<<1)+1;
}
}
}; // priority_queue_node
//! Forwards messages only if the threshold has not been reached
/** This node forwards items until its threshold is reached.
It contains no buffering. If the downstream node rejects, the
message is dropped. */
template< typename T >
class limiter_node : public graph_node, public receiver< T >, public sender< T > {
protected:
using graph_node::my_graph;
public:
typedef T input_type;
typedef T output_type;
typedef sender< input_type > predecessor_type;
typedef receiver< output_type > successor_type;
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
typedef std::vector<successor_type *> successor_vector_type;
typedef std::vector<predecessor_type *> predecessor_vector_type;
#endif
private:
size_t my_threshold;
size_t my_count; //number of successful puts
size_t my_tries; //number of active put attempts
internal::reservable_predecessor_cache< T, spin_mutex > my_predecessors;
spin_mutex my_mutex;
internal::broadcast_cache< T > my_successors;
int init_decrement_predecessors;
friend class internal::forward_task_bypass< limiter_node<T> >;
// Let decrementer call decrement_counter()
friend class internal::decrementer< limiter_node<T> >;
bool check_conditions() { // always called under lock
return ( my_count + my_tries < my_threshold && !my_predecessors.empty() && !my_successors.empty() );
}
// only returns a valid task pointer or NULL, never SUCCESSFULLY_ENQUEUED
task *forward_task() {
input_type v;
task *rval = NULL;
bool reserved = false;
{
spin_mutex::scoped_lock lock(my_mutex);
if ( check_conditions() )
++my_tries;
else
return NULL;
}
//SUCCESS
// if we can reserve and can put, we consume the reservation
// we increment the count and decrement the tries
if ( (my_predecessors.try_reserve(v)) == true ){
reserved=true;
if ( (rval = my_successors.try_put_task(v)) != NULL ){
{
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
my_predecessors.try_consume();
if ( check_conditions() ) {
task* tp = this->my_graph.root_task();
if ( tp ) {
task *rtask = new ( task::allocate_additional_child_of( *tp ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
FLOW_SPAWN (*rtask);
}
}
}
return rval;
}
}
//FAILURE
//if we can't reserve, we decrement the tries
//if we can reserve but can't put, we decrement the tries and release the reservation
{
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
if (reserved) my_predecessors.try_release();
if ( check_conditions() ) {
task* tp = this->my_graph.root_task();
if ( tp ) {
task *rtask = new ( task::allocate_additional_child_of( *tp ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
__TBB_ASSERT(!rval, "Have two tasks to handle");
return rtask;
}
}
return rval;
}
}
void forward() {
__TBB_ASSERT(false, "Should never be called");
return;
}
task * decrement_counter() {
{
spin_mutex::scoped_lock lock(my_mutex);
if(my_count) --my_count;
}
return forward_task();
}
public:
//! The internal receiver< continue_msg > that decrements the count
internal::decrementer< limiter_node<T> > decrement;
//! Constructor
limiter_node(graph &g, size_t threshold, int num_decrement_predecessors=0) :
graph_node(g), my_threshold(threshold), my_count(0), my_tries(0),
init_decrement_predecessors(num_decrement_predecessors),
decrement(num_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
tbb::internal::fgt_node( tbb::internal::FLOW_LIMITER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<receiver<continue_msg> *>(&decrement),
static_cast<sender<output_type> *>(this) );
}
//! Copy constructor
limiter_node( const limiter_node& src ) :
graph_node(src.my_graph), receiver<T>(), sender<T>(),
my_threshold(src.my_threshold), my_count(0), my_tries(0),
init_decrement_predecessors(src.init_decrement_predecessors),
decrement(src.init_decrement_predecessors)
{
my_predecessors.set_owner(this);
my_successors.set_owner(this);
decrement.set_owner(this);
tbb::internal::fgt_node( tbb::internal::FLOW_LIMITER_NODE, &this->my_graph,
static_cast<receiver<input_type> *>(this), static_cast<receiver<continue_msg> *>(&decrement),
static_cast<sender<output_type> *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
//! Replace the current successor with this new successor
/* override */ bool register_successor( receiver<output_type> &r ) {
spin_mutex::scoped_lock lock(my_mutex);
bool was_empty = my_successors.empty();
my_successors.register_successor(r);
//spawn a forward task if this is the only successor
if ( was_empty && !my_predecessors.empty() && my_count + my_tries < my_threshold ) {
task* tp = this->my_graph.root_task();
if ( tp ) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *tp ) )
internal::forward_task_bypass < limiter_node<T> >( *this ) ) );
}
}
return true;
}
//! Removes a successor from this node
/** r.remove_predecessor(*this) is also called. */
/* override */ bool remove_successor( receiver<output_type> &r ) {
r.remove_predecessor(*this);
my_successors.remove_successor(r);
return true;
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
/*override*/void internal_add_built_successor(receiver<output_type> &src) {
my_successors.internal_add_built_successor(src);
}
/*override*/void internal_delete_built_successor(receiver<output_type> &src) {
my_successors.internal_delete_built_successor(src);
}
/*override*/size_t successor_count() { return my_successors.successor_count(); }
/*override*/ void copy_successors(successor_vector_type &v) {
my_successors.copy_successors(v);
}
/*override*/void internal_add_built_predecessor(sender<output_type> &src) {
my_predecessors.internal_add_built_predecessor(src);
}
/*override*/void internal_delete_built_predecessor(sender<output_type> &src) {
my_predecessors.internal_delete_built_predecessor(src);
}
/*override*/size_t predecessor_count() { return my_predecessors.predecessor_count(); }
/*override*/ void copy_predecessors(predecessor_vector_type &v) {
my_predecessors.copy_predecessors(v);
}
#endif /* TBB_PREVIEW_FLOW_GRAPH_FEATURES */
//! Adds src to the list of cached predecessors.
/* override */ bool register_predecessor( predecessor_type &src ) {
spin_mutex::scoped_lock lock(my_mutex);
my_predecessors.add( src );
task* tp = this->my_graph.root_task();
if ( my_count + my_tries < my_threshold && !my_successors.empty() && tp ) {
FLOW_SPAWN( (* new ( task::allocate_additional_child_of( *tp ) )
internal::forward_task_bypass < limiter_node<T> >( *this ) ) );
}
return true;
}
//! Removes src from the list of cached predecessors.
/* override */ bool remove_predecessor( predecessor_type &src ) {
my_predecessors.remove( src );
return true;
}
protected:
template< typename R, typename B > friend class run_and_put_task;
template<typename X, typename Y> friend class internal::broadcast_cache;
template<typename X, typename Y> friend class internal::round_robin_cache;
//! Puts an item to this receiver
/* override */ task *try_put_task( const T &t ) {
{
spin_mutex::scoped_lock lock(my_mutex);
if ( my_count + my_tries >= my_threshold )
return NULL;
else
++my_tries;
}
task * rtask = my_successors.try_put_task(t);
if ( !rtask ) { // try_put_task failed.
spin_mutex::scoped_lock lock(my_mutex);
--my_tries;
task* tp = this->my_graph.root_task();
if ( check_conditions() && tp ) {
rtask = new ( task::allocate_additional_child_of( *tp ) )
internal::forward_task_bypass< limiter_node<T> >( *this );
}
}
else {
spin_mutex::scoped_lock lock(my_mutex);
++my_count;
--my_tries;
}
return rtask;
}
/*override*/void reset( __TBB_PFG_RESET_ARG(reset_flags f)) {
my_count = 0;
my_predecessors.reset(__TBB_PFG_RESET_ARG(f));
decrement.reset_receiver(__TBB_PFG_RESET_ARG(f));
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
my_successors.reset(f);
#endif
}
/*override*/void reset_receiver(__TBB_PFG_RESET_ARG(reset_flags f)) { my_predecessors.reset(__TBB_PFG_RESET_ARG(f)); }
}; // limiter_node
#include "internal/_flow_graph_join_impl.h"
using internal::reserving_port;
using internal::queueing_port;
using internal::tag_matching_port;
using internal::input_port;
using internal::tag_value;
using internal::NO_TAG;
template<typename OutputTuple, graph_buffer_policy JP=queueing> class join_node;
template<typename OutputTuple>
class join_node<OutputTuple,reserving>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, reserving_port, OutputTuple, reserving> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, reserving_port, OutputTuple, reserving> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_RESERVING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename OutputTuple>
class join_node<OutputTuple,queueing>: public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value, queueing_port, OutputTuple, queueing> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, queueing_port, OutputTuple, queueing> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
join_node(graph &g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_QUEUEING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// template for tag_matching join_node
template<typename OutputTuple>
class join_node<OutputTuple, tag_matching> : public internal::unfolded_join_node<tbb::flow::tuple_size<OutputTuple>::value,
tag_matching_port, OutputTuple, tag_matching> {
private:
static const int N = tbb::flow::tuple_size<OutputTuple>::value;
typedef typename internal::unfolded_join_node<N, tag_matching_port, OutputTuple, tag_matching> unfolded_type;
public:
typedef OutputTuple output_type;
typedef typename unfolded_type::input_ports_type input_ports_type;
template<typename __TBB_B0, typename __TBB_B1>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1) : unfolded_type(g, b0, b1) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2) : unfolded_type(g, b0, b1, b2) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3) : unfolded_type(g, b0, b1, b2, b3) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4) :
unfolded_type(g, b0, b1, b2, b3, b4) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if __TBB_VARIADIC_MAX >= 6
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5) :
unfolded_type(g, b0, b1, b2, b3, b4, b5) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 7
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6) :
unfolded_type(g, b0, b1, b2, b3, b4, b5, b6) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 8
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 9
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
#if __TBB_VARIADIC_MAX >= 10
template<typename __TBB_B0, typename __TBB_B1, typename __TBB_B2, typename __TBB_B3, typename __TBB_B4,
typename __TBB_B5, typename __TBB_B6, typename __TBB_B7, typename __TBB_B8, typename __TBB_B9>
join_node(graph &g, __TBB_B0 b0, __TBB_B1 b1, __TBB_B2 b2, __TBB_B3 b3, __TBB_B4 b4, __TBB_B5 b5, __TBB_B6 b6,
__TBB_B7 b7, __TBB_B8 b8, __TBB_B9 b9) : unfolded_type(g, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#endif
join_node(const join_node &other) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<OutputTuple,N>( tbb::internal::FLOW_JOIN_NODE_TAG_MATCHING, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
// indexer node
#include "internal/_flow_graph_indexer_impl.h"
struct indexer_null_type {};
template<typename T0, typename T1=indexer_null_type, typename T2=indexer_null_type, typename T3=indexer_null_type,
typename T4=indexer_null_type, typename T5=indexer_null_type, typename T6=indexer_null_type,
typename T7=indexer_null_type, typename T8=indexer_null_type, typename T9=indexer_null_type> class indexer_node;
//indexer node specializations
template<typename T0>
class indexer_node<T0> : public internal::unfolded_indexer_node<tuple<T0> > {
private:
static const int N = 1;
public:
typedef tuple<T0> InputTuple;
typedef typename internal::tagged_msg<size_t, T0> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1>
class indexer_node<T0, T1> : public internal::unfolded_indexer_node<tuple<T0, T1> > {
private:
static const int N = 2;
public:
typedef tuple<T0, T1> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2>
class indexer_node<T0, T1, T2> : public internal::unfolded_indexer_node<tuple<T0, T1, T2> > {
private:
static const int N = 3;
public:
typedef tuple<T0, T1, T2> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3>
class indexer_node<T0, T1, T2, T3> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3> > {
private:
static const int N = 4;
public:
typedef tuple<T0, T1, T2, T3> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
template<typename T0, typename T1, typename T2, typename T3, typename T4>
class indexer_node<T0, T1, T2, T3, T4> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4> > {
private:
static const int N = 5;
public:
typedef tuple<T0, T1, T2, T3, T4> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#if __TBB_VARIADIC_MAX >= 6
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5>
class indexer_node<T0, T1, T2, T3, T4, T5> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5> > {
private:
static const int N = 6;
public:
typedef tuple<T0, T1, T2, T3, T4, T5> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 6
#if __TBB_VARIADIC_MAX >= 7
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6>
class indexer_node<T0, T1, T2, T3, T4, T5, T6> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6> > {
private:
static const int N = 7;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 7
#if __TBB_VARIADIC_MAX >= 8
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7> > {
private:
static const int N = 8;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 8
#if __TBB_VARIADIC_MAX >= 9
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8>
class indexer_node<T0, T1, T2, T3, T4, T5, T6, T7, T8> : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> > {
private:
static const int N = 9;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 9
#if __TBB_VARIADIC_MAX >= 10
template<typename T0, typename T1, typename T2, typename T3, typename T4, typename T5,
typename T6, typename T7, typename T8, typename T9>
class indexer_node/*default*/ : public internal::unfolded_indexer_node<tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> > {
private:
static const int N = 10;
public:
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> InputTuple;
typedef typename internal::tagged_msg<size_t, T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> output_type;
typedef typename internal::unfolded_indexer_node<InputTuple> unfolded_type;
indexer_node(graph& g) : unfolded_type(g) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
// Copy constructor
indexer_node( const indexer_node& other ) : unfolded_type(other) {
tbb::internal::fgt_multiinput_node<InputTuple,N>( tbb::internal::FLOW_INDEXER_NODE, &this->my_graph,
this->input_ports(), static_cast< sender< output_type > *>(this) );
}
#if TBB_PREVIEW_FLOW_GRAPH_TRACE
/* override */ void set_name( const char *name ) {
tbb::internal::fgt_node_desc( this, name );
}
#endif
};
#endif //variadic max 10
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void make_edge( sender<T> &p, receiver<T> &s ) {
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
s.internal_add_built_predecessor(p);
p.internal_add_built_successor(s);
#endif
p.register_successor( s );
tbb::internal::fgt_make_edge( &p, &s );
}
//! Makes an edge between a single predecessor and a single successor
template< typename T >
inline void remove_edge( sender<T> &p, receiver<T> &s ) {
p.remove_successor( s );
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
// TODO: should we try to remove p from the predecessor list of s, in case the edge is reversed?
p.internal_delete_built_successor(s);
s.internal_delete_built_predecessor(p);
#endif
tbb::internal::fgt_remove_edge( &p, &s );
}
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
template<typename C >
template< typename S >
void edge_container<C>::sender_extract( S &s ) {
edge_vector e = built_edges;
for ( typename edge_vector::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(s, **i);
}
}
template<typename C >
template< typename R >
void edge_container<C>::receiver_extract( R &r ) {
edge_vector e = built_edges;
for ( typename edge_vector::iterator i = e.begin(); i != e.end(); ++i ) {
remove_edge(**i, r);
}
}
#endif
//! Returns a copy of the body from a function or continue node
template< typename Body, typename Node >
Body copy_body( Node &n ) {
return n.template copy_function_object<Body>();
}
} // interface7
#if TBB_PREVIEW_FLOW_GRAPH_FEATURES
using interface7::reset_flags;
using interface7::rf_reset_protocol;
using interface7::rf_reset_bodies;
using interface7::rf_extract;
#endif
using interface7::graph;
using interface7::graph_node;
using interface7::continue_msg;
using interface7::sender;
using interface7::receiver;
using interface7::continue_receiver;
using interface7::source_node;
using interface7::function_node;
using interface7::multifunction_node;
using interface7::split_node;
using interface7::internal::output_port;
using interface7::indexer_node;
using interface7::internal::tagged_msg;
using interface7::internal::cast_to;
using interface7::internal::is_a;
using interface7::continue_node;
using interface7::overwrite_node;
using interface7::write_once_node;
using interface7::broadcast_node;
using interface7::buffer_node;
using interface7::queue_node;
using interface7::sequencer_node;
using interface7::priority_queue_node;
using interface7::limiter_node;
using namespace interface7::internal::graph_policy_namespace;
using interface7::join_node;
using interface7::input_port;
using interface7::copy_body;
using interface7::make_edge;
using interface7::remove_edge;
using interface7::internal::NO_TAG;
using interface7::internal::tag_value;
} // flow
} // tbb
#undef __TBB_PFG_RESET_ARG
#undef __TBB_COMMA
#endif // __TBB_flow_graph_H