rational_polynomial_test.cc (8445B)
1 // Copyright (c) the JPEG XL Project Authors. All rights reserved. 2 // 3 // Use of this source code is governed by a BSD-style 4 // license that can be found in the LICENSE file. 5 6 #include <cmath> 7 #include <string> 8 9 #undef HWY_TARGET_INCLUDE 10 #define HWY_TARGET_INCLUDE "lib/jxl/rational_polynomial_test.cc" 11 #include <hwy/foreach_target.h> 12 #include <hwy/highway.h> 13 #include <hwy/tests/hwy_gtest.h> 14 15 #include "lib/jxl/base/common.h" 16 #include "lib/jxl/base/rational_polynomial-inl.h" 17 #include "lib/jxl/base/status.h" 18 #include "lib/jxl/testing.h" 19 20 HWY_BEFORE_NAMESPACE(); 21 namespace jxl { 22 namespace HWY_NAMESPACE { 23 24 using T = float; // required by EvalLog2 25 using D = HWY_FULL(T); 26 27 // These templates are not found via ADL. 28 using hwy::HWY_NAMESPACE::Add; 29 using hwy::HWY_NAMESPACE::GetLane; 30 using hwy::HWY_NAMESPACE::ShiftLeft; 31 using hwy::HWY_NAMESPACE::ShiftRight; 32 using hwy::HWY_NAMESPACE::Sub; 33 34 // Generic: only computes polynomial 35 struct EvalPoly { 36 template <size_t NP, size_t NQ> 37 T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const { 38 const HWY_FULL(T) d; 39 const auto vx = Set(d, x); 40 const auto approx = EvalRationalPolynomial(d, vx, p, q); 41 return GetLane(approx); 42 } 43 }; 44 45 // Range reduction for log2 46 struct EvalLog2 { 47 template <size_t NP, size_t NQ> 48 T operator()(T x, const T (&p)[NP], const T (&q)[NQ]) const { 49 const HWY_FULL(T) d; 50 auto vx = Set(d, x); 51 52 const HWY_FULL(int32_t) di; 53 const auto x_bits = BitCast(di, vx); 54 // Cannot handle negative numbers / NaN. 55 JXL_DASSERT(AllTrue(di, Eq(Abs(x_bits), x_bits))); 56 57 // Range reduction to [-1/3, 1/3] - 3 integer, 2 float ops 58 const auto exp_bits = Sub(x_bits, Set(di, 0x3f2aaaab)); // = 2/3 59 // Shifted exponent = log2; also used to clear mantissa. 60 const auto exp_shifted = ShiftRight<23>(exp_bits); 61 const auto mantissa = BitCast(d, Sub(x_bits, ShiftLeft<23>(exp_shifted))); 62 const auto exp_val = ConvertTo(d, exp_shifted); 63 vx = Sub(mantissa, Set(d, 1.0f)); 64 65 const auto approx = Add(EvalRationalPolynomial(d, vx, p, q), exp_val); 66 return GetLane(approx); 67 } 68 }; 69 70 // Functions to approximate: 71 72 T LinearToSrgb8Direct(T val) { 73 if (val < 0.0) return 0.0; 74 if (val >= 255.0) return 255.0; 75 if (val <= 10.0 / 12.92) return val * 12.92; 76 return 255.0 * (std::pow(val / 255.0, 1.0 / 2.4) * 1.055 - 0.055); 77 } 78 79 T SimpleGamma(T v) { 80 static const T kGamma = 0.387494322593; 81 static const T limit = 43.01745241042018; 82 T bright = v - limit; 83 if (bright >= 0) { 84 static const T mul = 0.0383723643799; 85 v -= bright * mul; 86 } 87 static const T limit2 = 94.68634353321337; 88 T bright2 = v - limit2; 89 if (bright2 >= 0) { 90 static const T mul = 0.22885405968; 91 v -= bright2 * mul; 92 } 93 static const T offset = 0.156775786057; 94 static const T scale = 8.898059160493739; 95 T retval = scale * (offset + pow(v, kGamma)); 96 return retval; 97 } 98 99 // Runs CaratheodoryFejer and verifies the polynomial using a lot of samples to 100 // return the biggest error. 101 template <size_t NP, size_t NQ, class Eval> 102 T RunApproximation(T x0, T x1, const T (&p)[NP], const T (&q)[NQ], 103 const Eval& eval, T func_to_approx(T)) { 104 float maxerr = 0; 105 T lastPrint = 0; 106 // NOLINTNEXTLINE(clang-analyzer-security.FloatLoopCounter) 107 for (T x = x0; x <= x1; x += (x1 - x0) / 10000.0) { 108 const T f = func_to_approx(x); 109 const T g = eval(x, p, q); 110 maxerr = std::max(fabsf(g - f), maxerr); 111 if (x == x0 || x - lastPrint > (x1 - x0) / 20.0) { 112 printf("x: %11.6f, f: %11.6f, g: %11.6f, e: %11.6f\n", x, f, g, 113 fabs(g - f)); 114 lastPrint = x; 115 } 116 } 117 return maxerr; 118 } 119 120 void TestSimpleGamma() { 121 const T p[4 * (6 + 1)] = { 122 HWY_REP4(-5.0646949363741811E-05), HWY_REP4(6.7369380528439771E-05), 123 HWY_REP4(8.9376652530412794E-05), HWY_REP4(2.1153513301520462E-06), 124 HWY_REP4(-6.9130322970386449E-08), HWY_REP4(3.9424752749293728E-10), 125 HWY_REP4(1.2360288207619576E-13)}; 126 127 const T q[4 * (6 + 1)] = { 128 HWY_REP4(-6.6389733798591366E-06), HWY_REP4(1.3299859726565908E-05), 129 HWY_REP4(3.8538748358398873E-06), HWY_REP4(-2.8707687262928236E-08), 130 HWY_REP4(-6.6897385800005434E-10), HWY_REP4(6.1428748869186003E-12), 131 HWY_REP4(-2.5475738169252870E-15)}; 132 133 const T err = RunApproximation(0.77, 274.579999999999984, p, q, EvalPoly(), 134 SimpleGamma); 135 EXPECT_LT(err, 0.05); 136 } 137 138 void TestLinearToSrgb8Direct() { 139 const T p[4 * (5 + 1)] = { 140 HWY_REP4(-9.5357499040105154E-05), HWY_REP4(4.6761186249798248E-04), 141 HWY_REP4(2.5708174333943594E-04), HWY_REP4(1.5250087770436082E-05), 142 HWY_REP4(1.1946768008931187E-07), HWY_REP4(5.9916446295972850E-11)}; 143 144 const T q[4 * (4 + 1)] = { 145 HWY_REP4(1.8932479758079768E-05), HWY_REP4(2.7312342474687321E-05), 146 HWY_REP4(4.3901204783327006E-06), HWY_REP4(1.0417787306920273E-07), 147 HWY_REP4(3.0084206762140419E-10)}; 148 149 const T err = 150 RunApproximation(0.77, 255, p, q, EvalPoly(), LinearToSrgb8Direct); 151 EXPECT_LT(err, 0.05); 152 } 153 154 void TestExp() { 155 const T p[4 * (2 + 1)] = {HWY_REP4(9.6266879665530902E-01), 156 HWY_REP4(4.8961265681586763E-01), 157 HWY_REP4(8.2619259189548433E-02)}; 158 const T q[4 * (2 + 1)] = {HWY_REP4(9.6259895571622622E-01), 159 HWY_REP4(-4.7272457588933831E-01), 160 HWY_REP4(7.4802088567547664E-02)}; 161 const T err = RunApproximation(-1, 1, p, q, EvalPoly(), 162 [](T x) { return static_cast<T>(exp(x)); }); 163 EXPECT_LT(err, 1E-4); 164 } 165 166 void TestNegExp() { 167 // 4,3 is the min required for monotonicity; max error in 0,10: 751 ppm 168 // no benefit for k>50. 169 const T p[4 * (4 + 1)] = { 170 HWY_REP4(5.9580258551150123E-02), HWY_REP4(-2.5073728806886408E-02), 171 HWY_REP4(4.1561830213689248E-03), HWY_REP4(-3.1815408488900372E-04), 172 HWY_REP4(9.3866690094906802E-06)}; 173 const T q[4 * (3 + 1)] = { 174 HWY_REP4(5.9579108238812878E-02), HWY_REP4(3.4542074345478582E-02), 175 HWY_REP4(8.7263562483501714E-03), HWY_REP4(1.4095109143061216E-03)}; 176 177 const T err = RunApproximation(0, 10, p, q, EvalPoly(), 178 [](T x) { return static_cast<T>(exp(-x)); }); 179 EXPECT_LT(err, sizeof(T) == 8 ? 2E-5 : 3E-5); 180 } 181 182 void TestSin() { 183 const T p[4 * (6 + 1)] = { 184 HWY_REP4(1.5518122109203780E-05), HWY_REP4(2.3388958643675966E+00), 185 HWY_REP4(-8.6705520940849157E-01), HWY_REP4(-1.9702294764873535E-01), 186 HWY_REP4(1.2193404314472320E-01), HWY_REP4(-1.7373966109788839E-02), 187 HWY_REP4(7.8829435883034796E-04)}; 188 const T q[4 * (5 + 1)] = { 189 HWY_REP4(2.3394371422557279E+00), HWY_REP4(-8.7028221081288615E-01), 190 HWY_REP4(2.0052872219658430E-01), HWY_REP4(-3.2460335995264836E-02), 191 HWY_REP4(3.1546157932479282E-03), HWY_REP4(-1.6692542019380155E-04)}; 192 193 const T err = RunApproximation(0, Pi<T>(1) * 2, p, q, EvalPoly(), 194 [](T x) { return static_cast<T>(sin(x)); }); 195 EXPECT_LT(err, sizeof(T) == 8 ? 5E-4 : 7E-4); 196 } 197 198 void TestLog() { 199 HWY_ALIGN const T p[4 * (2 + 1)] = {HWY_REP4(-1.8503833400518310E-06), 200 HWY_REP4(1.4287160470083755E+00), 201 HWY_REP4(7.4245873327820566E-01)}; 202 HWY_ALIGN const T q[4 * (2 + 1)] = {HWY_REP4(9.9032814277590719E-01), 203 HWY_REP4(1.0096718572241148E+00), 204 HWY_REP4(1.7409343003366853E-01)}; 205 const T err = RunApproximation(1E-6, 1000, p, q, EvalLog2(), std::log2); 206 printf("%E\n", err); 207 } 208 209 HWY_NOINLINE void TestRationalPolynomial() { 210 TestSimpleGamma(); 211 TestLinearToSrgb8Direct(); 212 TestExp(); 213 TestNegExp(); 214 TestSin(); 215 TestLog(); 216 } 217 218 // NOLINTNEXTLINE(google-readability-namespace-comments) 219 } // namespace HWY_NAMESPACE 220 } // namespace jxl 221 HWY_AFTER_NAMESPACE(); 222 223 #if HWY_ONCE 224 namespace jxl { 225 226 class RationalPolynomialTest : public hwy::TestWithParamTarget {}; 227 HWY_TARGET_INSTANTIATE_TEST_SUITE_P(RationalPolynomialTest); 228 229 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSimpleGamma); 230 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLinearToSrgb8Direct); 231 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestExp); 232 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestNegExp); 233 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestSin); 234 HWY_EXPORT_AND_TEST_P(RationalPolynomialTest, TestLog); 235 236 } // namespace jxl 237 #endif // HWY_ONCE